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Abstract

This paper presents a step-by-step tutorial of the methods and the
tools that were used for the reliability analysis of fault-tolerant sys-
tems. The approach of this paper is the Markov (or semi-Markov)
state-space method. The paper is intended for design engineers with a
basic understanding of computer architecture and fault tolerance, but
little knowledge of reliability modeling.  The representation of archi-
tectural features in mathematical models is emphasized. This paper
does not present details of the mathematical solution of complex reli-
ability models. Instead, it describes the use of several recently devel-
oped computer programs—SURE, ASSIST, STEM, and PAWS—that
automate the generation and the solution of these models.

 1. Introduction

The rapid growth of digital electronics technology has led to the proliferation of sophisticated com-
puter systems capable of achieving very high reliability requirements. Reliability requirements for com-
puter systems used in military aircraft, for example, are typically in the range of 1− 10−7 per mission,
and reliability requirements of 1− 10−9 for a 10-hr flight are often expressed for flight-crucial avionics
systems. To achieve such optimistic reliability goals, computer systems have been designed to recog-
nize and tolerate their own faults. Although capable of tolerating certain faults, these systems are still
susceptible to failure. Thus, the reliability of these systems must be evaluated to ensure that require-
ments are met.

The reliability analysis of a fault-tolerant computer system is a complex problem.  Lifetime tests are
typically used to determine the reliability or “lifetime” of a diversity of products such as light bulbs, bat-
teries, and electronic devices. The lifetime test methodology is clearly impractical, though, for computer
systems with reliability goals in the order of 1− 10−7 or higher; hence, an alternate approach is neces-
sary. The approach generally taken to investigate the reliability of a highly reliable system is

1. Develop a mathematical reliability model of the system

2. Measure or estimate the parameters of the model

3. Compute system reliability based upon the model and the specified parameters

The estimated system reliability is consequently strongly dependent on the model itself. Because
the behavior of a fault-tolerant, highly reliable system is complex, formulating models that accurately
represent that behavior can be a difficult task. Mathematical models of fault-tolerant systems must cap-
ture the processes that lead to system failure and the system capabilities that enable operation in the
presence of failing components. Current manufacturing techniques cannot produce circuitry that meets
ultrahigh reliability requirements. Therefore, highly reliable systems use redundancy techniques, such
as parallel redundant units or dissimilar algorithms for computing the same function, to achieve fault
tolerance. Reconfiguration, the process of removing faulty components and either replacing them with
spares or degrading to an alternate configuration, is another method often utilized to increase reliability
without the overhead of more redundancy.

Fortunately, most of the detailed instruction-level activities of a system do not directly affect system
reliability. Only the macroscopic fault-related events must be included in the reliability model. Further-
more, experimentally testing the correctness of the model would require at least as much experimenta-
tion as is required for life testing. Consequently, the best approach is to carefully develop the reliability
model and subject it to scrutiny by a team of experts. The process of reliability modeling is thus not an
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exact science, and at best, should be called an art. The goal of this paper is to look into this craft of
reliability modeling.

The paper is structured in a tutorial style rather than as a catalog of reliability models. Conse-
quently, elementary concepts are introduced first and are followed by increasingly more complex con-
cepts. Thus, the paper begins with an overview of essential aspects of Markov state-space models.
Next, the fundamental techniques that were used for modeling the nonreconfigurable systems are devel-
oped. Then, the basic techniques that were used in modeling reconfigurable systems are explored.
Before examining more complicated models, the computer program SURE (Semi-Markov Unreliability
Range Evaluator), which can be used to solve the reliability models numerically, is introduced (ref. 1).
Next, two basic reconfigurations—degradation and sparing—are examined in more detail with the help
of the SURE input language.

At this point, the paper introduces a new language, ASSIST, for describing reliability models. This
language is necessary because the models presented in the later sections are very large and complex.
The expressiveness of the ASSIST language allows complex models to be defined in a succinct manner.
Next, complex systems consisting of multiple triads that use various forms of reconfiguration are inves-
tigated. Then the techniques that were used to model transient and intermittent faults are presented. The
next section explores the techniques that were used to model the components of control system architec-
tures, which include sensors, buses, and actuators. Finally, some specialized topics such as sequence
dependencies, phased missions, and nonconstant failure rate models are presented.

 2. Introduction to Markov Modeling

Traditionally, the reliability analysis of a complex system has been accomplished with combinato-
rial mathematics. The standard fault-tree method of reliability analysis is based on such mathematics
(ref. 2). Unfortunately, the fault-tree approach is incapable of analyzing systems in which reconfigura-
tion is possible. (Work that augments fault-tree notation for the purpose of generating Markov models is
not included in this statement.) Basically, a fault tree can be used to model a system with

1. Only permanent faults (no transient or intermittent faults)

2. No reconfiguration

3. No time or sequence failure dependencies

4. No state-dependent behavior (e.g., state-dependent failure rates)

Because fault trees are easier to solve than Markov models, fault trees should be used wherever
these fundamental assumptions are not violated.  (For more information see ref. 3.)

In reconfigurable systems, the critical factor often becomes the effectiveness of the dynamic recon-
figuration process. It is necessary to model such systems by using the more powerful Markov modeling
technique. A Markov process is a stochastic process whose behavior depends only upon the current state
of the system. The particular sequence of steps by which the system entered the current state is
irrelevant to its future behavior. Markov state-space models have four main categories:

1. Discrete space and discrete time

2. Discrete space and continuous time

3. Continuous space and discrete time

4. Continuous space and continuous time

The first two categories involve a discrete space; that is, the states of the system can be numbered
with an integer. In the last two categories, the states of the system must be numbered with a real
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number.  In the first and the third categories, the system changes by discrete time steps and in the second
and the fourth categories, the system transitions occur over continuous time.

The second category is the one most useful for modeling fault-tolerant systems and will always be
used in this paper. Only models that contain a finite number of states will be used. However, the transi-
tion time between the states is not discrete and can take on any real value. For a more detailed mathe-
matical description of Markov analysis, see reference 4.

The first step in modeling a system with a discrete-space and continuous-time Markov model is to
represent the state of the system with a vector of attributes that change over time. These attributes are
typically system characteristics such as the number of working processors, the number of spare units, or
the number of faulty units that have not been removed. The more attributes included in the model, the
more complex the model will be. Thus, the smallest set of attributes that can accurately describe the
fault-related behavior of the system is typically chosen. The next step in the modeling process is to char-
acterize the transition time from one state to another. Because this transition time is rarely deterministic,
the transition times are described with a probability distribution.

Certain states in the system represent system failure, while others represent fault-free behavior or
correct operation in the presence of faults. The model chosen for the system must represent system fail-
ure properly. Defining exactly what constitutes system failure is difficult because system failure is often
an extremely complex function of external events, software state, and hardware state. The modeler is
forced to choose between conservative or nonconservative assumptions about system failure. If  the reli-
ability of the system must be higher than a specific value, then conservative assumptions are made. For
example, in a triple modular redundant (TMR) system of computers, the presence of two faulty comput-
ers is considered to be system failure. This assumption is conservative because the two faults may not
actually corrupt data in a manner that would defeat the voter. This assumption simplifies the model
because the probabilities of collusion of the faulty pair does not have to be modeled. In this paper, the
conservative approach will be used exclusively.

It is important that all transitions in the reliability model be measurable. This measurability often is
the primary consideration when developing a model for a system. Although a particular model may
elegantly describe the behavior of the system, if it depends upon unmeasurable parameters, then it is
useless.

Typically, the transitions of a fault-tolerant system model fall into two categories: slow failure tran-
sitions and fast recovery transitions. If the states of the model are defined properly, then the slow failure
transitions can be obtained from field data and/or MIL-STD 217F calculations (ref. 5). The fast recov-
ery transition corresponds to system responses to fault arrivals and can be measured experimentally
with fault injection. The primary problem is to properly model the system so that the determination of
these transitions is facilitated. If the model is too coarse, the transitions become experimentally unob-
servable. If the model is too detailed, the number of transitions that must be measured can be exorbitant.

 This paper explores the methods and the assumptions that were used in the development of reliabil-
ity models for fault-tolerant computer systems.

3. Modeling Nonreconfigurable Systems

The simplest systems to model are nonreconfigurable systems. This section introduces the basic ele-
ments of reliability modeling by describing how to model simple nonreconfigurable systems that range
from a single simplex computer through a majority-votingN-modular-redundant (NMR) system.

3.1. Simplex Computer

The first example is a system consisting of a single computer. First, letT be a random variable rep-
resenting the time to failure of the computer. Next, define a distribution forT, sayF(t). Typically,
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electronic components, and consequently computers, are assumed to fail according to the exponential
distribution

The parameterλ completely defines this distribution. An important concept in reliability modeling
is the failure rate (or hazard rate),h(t) defined as follows:

For the exponential distribution, the hazard rateh(t) = λ. The exponential distribution is the only
distribution with a constant hazard rate. The Markov model representing this system is given in figure 1.

In this Markov model, state (1) represents the operational state in which the simplex computer is
working, state (2) represents the system failure state in which the simplex computer has failed, and the
transition from state (1) to state (2) represents the occurrence of the failure of the simplex computer. The
transitions of a Markov model are exponential, and thus, can be labeled by the constant hazard rate.

For reliability modeling purposes, electronic components are generally assumed to fail according to
the exponential distribution.  Some immature devices may exhibit a somewhat higher failure rate due to
insufficient testing before product delivery; however, mature devices have been shown experimentally
to fail according to the exponential distribution (ref. 6).  The MIL-STD 217F handbook offers a more
complete discussion on the problem of estimating the reliability of electronic components. Once the
reliability of each component (e.g., a chip) in a computer is known, the failure rate of the computer is
simply the sum of the failure rates of the individual components. For example supposeλ1, λ2,...,λn rep-
resent the failure rates of the components in the computer.  LettingT be a random variable representing
the time of failure of the computer andTi represent the time theith component fails, the distribution of
failure for the computer is determined as follows:

Assuming that the components fail independently, then

which is an exponential distribution with failure rate .

Figure 1.  Model of simplex computer.
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This technique does not work for parallel redundant systems. The time of failure of a redundant sys-
tem is not merely the time that the first component fails.  Such systems will be examined in the follow-
ing sections.

3.2. Static Redundancy

The triple modular redundant (TMR) system is one of the simplest fault-tolerant computer architec-
tures. The system consists of three computers; all performing exactly the same computations on exactly
the same inputs. The computers are assumed to be physically isolated so that a failed computer cannot
affect another working computer. Mathematically, therefore, the computers are assumed to fail indepen-
dently. It is further assumed that the outputs are voted prior to being used by the external system (not
included in this model), and thus, a single failure does not propagate its erroneous value to the external
world. Thus, system failure does not occur until two computers fail. The model of figure 2 describes
such a system.

State (1) represents the initial condition of three working computers. The transition from state (1) to
state (2) is labeled 3λ to represent the rate at which any one of the three computers fails. Because all the
computers are identical, the failure rateλ is the same for each computer.

The system is in state (2) when one processor has failed. The transition from state (2) to state (3) has
rate 2λ because only two working computers can fail. State (3) represents system failure because a
majority of the computers in the system have failed. The processor failure rate isλ =  10−4/hr.

In figure 3, the probability of system failure as a function of mission time is shown.

It can be seen that high reliability is strongly dependent on a short mission time.

The system was implicitly assumed to start with no failed components (Probability in state (1) at
time 0 = 1). This probability is equivalent to assuming perfect maintenance between missions. The
probability of system failure as a function of the processor failure rateλ is plotted in figure 4.

Figure 2.  Model of TMR system.

Figure 3.  Failure probability as function of mission time.
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This probability was calculated for a mission time of 10 hr. Throughout this paper, unless otherwise
stated, a mission time of 10 hr will be used.

The model shown in figure 2 uses the technique of state “aggregation” to reduce the number of
states. The model in figure 5 also shows a TMR system, but without state aggregation.

This model does not take advantage of the inherent symmetry of the system. Each component is
given a separate failure transition. Thus, three transition ratesλ1, λ2, andλ3 are used.  In a TMR system,
these three rates are all equal because the redundant channels are identical.  A comparison of the model
in figure 2 with the model in figure 5 shows the significant reductions in the number of states that can be
obtained by use of aggregation. Throughout the rest of the report, aggregated models will be used unless
an asymmetry exists in the system that prevents this usage.

3.3. Analytic Solution to TMR Model

In this section, the basic technique for solving a Markov model analytically is presented. A detailed
understanding of this section is not necessary to understand the rest of this paper. This section may be
omitted on the first reading.

The solution of a Markov model is conceptually simple, although the details can be cumbersome.
An n-state Markov model leads to a system ofn-coupled differential equations. These equations can

Figure 4.  Failure probability as function ofλ.

Figure 5.  Nonaggregated model of TMR system.
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most simply be represented with vector notation. Let  be a vector that gives the probability of being
in each state at timet. For the three-state Markov model in figure 2

The system of differential equations is given by

where

In nonmatrix form

The matrixA is easily constructed by thinking of the Markov model in terms of flow in and flow out.
One begins with the off-diagonal components.  Because there is a transition from state (1) to state (2),
the entry at a12 is nonzero. The value ofa12 is the transition rate 3λ. The transition from state (2) to
state (3) leads to the only other nonzero (nondiagonal) entry,a23. Its value is 2λ. The diagonal entries
are obtained by summing all  nondiagonal entries on the same row and negating it. The solution can be
written as

The solution requires knowledge of the initial state probabilities . If the system begins in a fault-
free state, this is given by

If the model is changed as shown in figure 6, the matrix A becomes

Figure 6.  Altered model.
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The three equations become

The flow-in and flow-out relationship is clearly seen in these equations. The total flow out of
state (1), , is given by−3λ P1(t) + α P2(t). There is 3λP1(t) out of state (1) andαP2(t) into
state (1). Thus, the signs of the terms are− and +, respectively.

For more detailed information about the solution of Markov models, see reference 7.

3.4. N-Modular-Redundant System

The assumptions of anN-modular-redundant system are the same as  a TMR system. The voter used
in such a system is usually a majority voter.  As long as a majority of processors have not failed, the sys-
tem is still operational. The following model shown in figure 7 describes a seven-processor system with
seven-way voting. The probability of system failure as a function of mission time is given in figure 8.
Figure 9 shows the unreliability of an NMR system as a function ofN.

Theoretically, the probability of system failure approaches zero asN approaches infinity. Of course,
this model ignores the practical problem of building an arbitrarily largeN-way voter. If implemented in
hardware, the additional hardware would significantly increase the processor failure rateλ. If imple-
mented in software, the CPU overhead could be enormous, which would seriously increase the likeli-
hood of a critical task missing a hard deadline (ref. 8).

4. Modeling Reconfigurable Systems

Fault-tolerant systems are often designed by using a strategy of reconfiguration. Reconfiguration
strategies come in many varieties, but always involve the logical or the physical removal of a faulty

Figure 7.  Model of 7MR system.

Figure 8.  The 7MR system unreliability as function of mis-
sion time.

Figure 9.  The NMR system unreliability as functionN.
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component. The techniques that are used to identify the faulty component and the methods that are used
to repair the system vary greatly and can lead to complex reliability models. Two basic reconfiguration
strategies occur—degradation and replacement with spares. The degradation method involves the per-
manent removal of a faulty component without replacement. The reconfigured system continues with a
reduced set of components. The replacement with spares method involves both the removal of faulty
components and their replacement with a spare. In this section, these concepts will be introduced briefly
and explored in greater detail in later sections.

4.1. Degradable Triad

The simplest architecture based upon majority voting is the triplex system. To increase reliability,
triplex systems have been designed that reconfigure by degradation. The model shown in figure 10
describes the behavior of a simple degradable triplex system.

The degradable triplex system begins in state (1) with all three processors operational. The transi-
tion from state (1) to state (2) represents the failure of any of the three processors. Because the proces-
sors are identical,  the failure of each processor is not represented with a separate state. At state (2), the
system has one failed processor. The system analyzes the errors from the voter and diagnoses the prob-
lem. The transition from state (2) to state (4) represents the removal (reconfiguration) of the faulty pro-
cessor. Reconfiguration transitions are labeled with a distribution function (F(t)) rather than a rate. The
reason for this labeling is that experimental measurement of the reconfiguration process has revealed
that the distribution of recovery time is not exponential (ref. 6). Consequently, the transition cannot be
described by a constant rate. This label is interpreted as the probability that the transition time from
state (2) to state (4) is less thant is F(t). The presence of a nonexponential transition generalizes the
mathematical model to the class of semi-Markov models. Such models are far more difficult to solve
than pure Markov models. In sections 5 and 8, several computer programs will be discussed that can be
used to solve Markov and semi-Markov models.

At state (4), the system is operational with two good processors. The recovery transition from
state (2) to state (4) occurs as long as a second processor does not fail before the diagnosis is complete.
Otherwise, the voter could not distinguish the good results from the bad. Thus, a second transition exists
from state (2) to state (3), which represents the coincident failure of a second processor. The rate of this
transition is 2λ, because either of the remaining two processors could fail. State (3) is a death state (an
absorbing state) that represents failure of the system due to near-coincident failure. Of course, this is a
conservative assumption. Although two out of the three processors have failed, the failed processors
may not produce errors at the same time nor in the same place in memory. In this case, the voting mech-
anism may effectively mask both faults and the reliability of the system would be better than the model
predicts.

Figure 10.  Model of degradable triplex.
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 Perhaps a less conservative model could be developed, but this development would require the esti-
mation of the probability that two faults would defeat the voter. This probability would likely depend
upon the particular software workload on the system and many other design factors. Consequently, it
would be difficult to obtain. Also, the reliability analysis would not be independent of the workload. If
this probability is underestimated, the model would no longer be conservative. The reliability analyst is
often faced with many trade-offs similar to these. For life-critical systems, the trade-off should always
be made in the conservative direction.

At state (4), the system is operational with two good processors and no faulty processors in the
active configuration. Either one of these processors may fail and take the system to state (5). At
state (5), once again, a race occurs between the reconfiguration process that ends in state (7) and the
failure of a second processor that ends  in state (6).  The recovery distribution from state (5) could easily
be different from the recovery distribution from state (2) to state (4). However, for simplicity it is
assumed to be the same. State (6) is thus another death state and state (7) is the operational state where
one  good processor remains. The transition from state (7) to state (8) represents the failure of the last
processor. At state (8)  no good processors remains, and the probability of reaching this death state is
often referred to as failure by exhaustion of parts.

To solve the model shown in figure 10,F(t) must be known. SupposeF(t) = 1− e−δt. Then, given a
value forδ of 104/hr and a mission time of 10 hr, the model can be solved as a function ofλ as shown in
figure 11. Fixingλ at 10−4/hr andT at 10 hr,  the model can be solved as a function ofδ as shown in
figure 12.

From these graphs it can be seen that the system unreliabilityPf  is much more sensitive toλ than
to δ. ThePf  over much of the graph is proportional toλ2 and inversely proportional toδ. It can also be
seen that  a point of diminishing return exists forδ. However, typically this situation occurs at reconfig-
uration rates much higher than those which can be realized in a physical architecture.

4.2. Triad to Simplex

The model presented in section 4.1 was unrealistic in one major respect—the reconfiguration pro-
cess from the dual to the simplex was assumed to be perfect. In other words, when either of the two pro-
cessors failed, the system diagnosed which of the two processors was the faulty one with complete
accuracy. When using a majority voter on three or more processors, such an assumption is not unrealis-
tic. However, with only two good processors, this diagnosis cannot be perfect. In a later section, the use
of self-test programs to diagnose failure in a dual system will be explored.  In this section, the option of

Figure 11.  Degradable triplex as function ofλ. Figure 12.  Degradable triplex as funtion ofδ.
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degrading directly from a triplex to a simplex (i.e., avoiding the dual mode) will be examined. The
model shown in figure 13 describes this system.

The horizontal transitions represent fault arrivals. The vertical transition represents system recov-
ery. The recovery transition is labeled with a distribution function rather than a rate to indicate that the
transition is not exponential. The transition rate from state (1) to state (2) is 3λ because  three active pro-
cessors can fail. When one of those processors fails, the system is in state (2). Before reconfiguration
occurs,  two active processors can fail; thus, the transition from state (2) to death state (3) with rate 2λ
competes with the recovery transition. Reconfiguration consists of discarding both the faulty processor
and one of the working processors. Thus, the transition rate from state (4) to state (5) isλ because only
one processor remains in the active configuration.

4.3. Degradable Quadraplex System

The model in figure 14 describes a degradable quadraplex system.

This system starts with four working processors. When one of those four processors fails (state (2)),
the reconfiguration process consists of removing the faulty processor, thereby leaving a triad of proces-
sors (state (4)). When one of the three remaining processors fails (state (5)), the reconfiguration process
removes the faulty processor plus one of the working processors, which results in a simplex system
(state (7)). Note that  different functions are  used for the transition from state (5) to state (7)  and from
state (2) to state (4).  These different functions are necessary if the reconfiguration process, and hence
rate, varies as a function of the state.

4.4. Triad With One Spare

In the previous models, the reconfiguration process removed a faulty processor and the system con-
tinued to operate with degraded levels of redundancy. This section provides a brief introduction to the
technique of sparing. That is, replacing a faulty processor with a spare processor. This technique will be
explored in detail in section 7.

Figure 13.  Model of triplex to simplex system.

Figure 14.  Model of degradable quadraplex.

1 2
3λ

3
2λ

F(t)

5
λ

4

1 2
4λ

3
3λ

F1(t)

5
3λ

6
2λ

4

F2(t)

7 8
λ



12

Suppose a triplex system has one spare that does not fail when it is inactive. The model shown in
figure 15  shows this system.

State (2) represents two good processors and one faulty processor. The transition from state (2) to
state (4) represents the detection and the isolation of the faulty processor and its replacement with a
spare processor. While the system is in state (2), two active working processors can fail; thus, the rate of
the transition to death state (3) is 2λ. After reconfiguration occurs, once again three active processors
can fail; thus, the transition rate from state (4) to state (5) is 3λ. This model assumes the system does not
immediately degrade to simplex upon the next failure, but rather operates in duplex until the next failure
brings system failure.

4.5. Reliability Analysis During Design and Validation

 In this paper, two major categories of application of the reliability analysis techniques are dis-
cussed: design and validation. During the design phase of system development, it is often necessary to
perform trade-off analyses in order to make appropriate design decisions. Critical parameters, such as
system recovery times, must be estimated with little, if any, data. After the system has been developed,
these critical parameters must be measured to validate the reliability of the system implementation.
Experiments are performed to measure the actual system recovery times. The reliability models can then
be solved by using these accurate values for the parameters of the model. During the design phase, the
recovery processes are often modeled with exponential distributions because the actual distribution is
unknown. During the validation phase, the observed distribution is used for the reliability analysis.

5. Reliability Analysis Programs

 Before the techniques of modeling fault-tolerant systems are explored further, the input language
for the SURE reliability analysis program will be presented. The same input language is used for the
STEM and the PAWS reliability analysis programs. These programs are described in section 5.4.

 In the remainder of this paper, the models will be presented in the SURE input language. This
approach is desirable for two reasons. First, as the models increase in complexity, it soon becomes
impractical to present them graphically. Second, these programs can be used to solve the models as
functions of any model parameter. This presentation style will provide insight into the nature of the sys-
tems being modeled.

5.1. Overview of SURE

The SURE program is a reliability analysis tool for ultrareliable computer system architectures
(refs. 1 and 9) and is based upon computational methods developed at Langley Research Center
(ref. 10). These methods provide an efficient means for computing accurate upper and lower bounds for
the state probabilities of a large class of semi-Markov models.

Models are defined in SURE by enumerating all transitions of the model. The SURE program dis-
tinguishes between fast and slow transitions. If the mean transition timeµ is small with respect to the

Figure 15.  Model of triplex with one spare.
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mission time, that is,µ < T, then the transition is fast. Otherwise, it is slow. Slow transitions are
assumed to be exponentially distributed by the SURE program. Fast transitions can have an arbitrary
distribution. The SURE user must supply the mean and the standard deviation of the transition time. If
multiple competing fast transitions from a state occur, the user must supply the respective transition
probabilities along with the conditional means and standard deviations. Probably the easiest way to
learn the SURE input language is by example.

The input to the SURE program for the triad plus one spare in figure 15 is

LAMBDA = 1E-6 TO* 1E-2 BY 10;
MU = 2.7E-3;
SIGMA = 1.3E-2;

1,2 = 3*LAMBDA;
2,3 = 2*LAMBDA;
2,4 = <MU,SIGMA>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
TIME = 10;

The first three statements equate values to identifiers. The first identifierLAMBDA represents the
processor failure rate. The next two identifiersMU andSIGMA are the mean and the standard deviation
of the recovery time distribution from state (2) to state (4). The next five statements define the transi-
tions of the model. If the transition is a slow fault-arrival process, then only the exponential rate must be
provided. For example, the last statement defines a transition from state (5) to state (6) with rate 2λ. If
the transition is a fast recovery process, then the mean and the standard deviation of the recovery time
must be given. For example, the statement2,4 = <MU,SIGMA>   defines a transition from state (2) to
state (4) with mean recovery timeMU1 and standard deviationSIGMA1. The last statement sets the mis-
sion time to 10 hr.

The following illustrative interactive session uses SURE to process the preceding model. The model
description has been stored in a file namedTP1S. The user input follows the? prompt.

air58% sure

 SURE V7.9.8 NASA Langley Research Center

 1? read TP1S

 2: LAMBDA = 1E-6 TO* 1E-2 BY 10;
3: MU = 2.7E-3;
4: SIGMA = 1.3E-2;
5:
6: 1,2 = 3*LAMBDA;
7: 2,3 = 2*LAMBDA;
8: 2,4 = <MU,SIGMA>;
9: 4,5 = 3*LAMBDA;

10: 5,6 = 2*LAMBDA;
11: TIME = 10;

0.02 SECS. TO READ MODEL FILE
12? run
MODEL FILE = TP1S.mod          (SURE V7.9.8 22 Jun 94 12:01:38
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  LAMBDA  LOWERBOUND   UPPERBOUND  COMMENTS              RUN #1

----------- -----------  -----------  ----------------------------

1.00000e-06 1.39719e-13  1.65000e-13

1.00000e-05 1.65286e-11  1.92000e-11

1.00000e-04 4.20456e-09  4.62000e-09

1.00000e-03 2.92225e-06  3.16200e-06

1.00000e-02 2.35025e-03  2.47391e-03  <ExpMat>

2 PATH(S) TO DEATH STATES

Q(T) ACCURACY >= 14 DIGITS

0.000 SECS. CPU TIME UTILIZED

13? plot XYLOG

14? exit

The first statement uses theREAD command to input the model description file. It should be noted
thatλ is defined as a variable over a range of values in this file. This definition directs the SURE pro-
gram to automatically perform a sensitivity analysis as a function ofλ over the specified range.
Statement 11 defines the mission time to be 10 hr. The SURE program computes an upper and a lower
bound on the probability of system failure. Usually these bounds are within 5 percent of each other, and
thus they usually provide an accurate estimate of system failure. Statement 13 directs the program to
plot the output on the graphics device. Figure 16 shows the graph generated by this command. The
XYLOG argument causes SURE to plot theX- and theY-axes with logarithmic scales.

Because the upper and the lower bounds are very close, the bounds appear as one line in the plot.
The <ExpMat>  statement in theCOMMENTS field indicates that a slower numerical method was
required for this particular parameter value.

Figure 16.  Plot of SURE program output.
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5.2. Model Definition Syntax

In these sections, more detail is presented. These sections can be omitted during the first reading
and used as a reference when something is encountered that is not clear. The following conventions will
be used to facilitate the description of the SURE input language:

1. All reserved words will be capitalized in typewriter-style print.

2. Lowercase words that are in italics indicate items that are to be replaced by something defined
elsewhere.

3. Items enclosed in double square brackets  can be omitted.

4. Items enclosed in braces { } can be omitted or repeated as many times as desired.

5.2.1. Lexical details.The state numbers must be positive integers between zero and theMAXSTATE
implementation limit, usually 25 000 or larger. This limit can be increased simply by changing the
MAXSTATE constant in the program and recompiling. The transition rates and the conditional means
and standard deviations are floating point numbers. The Pascal REAL syntax is used for these numbers.
The semicolon is used for statement termination. Therefore, more than one statement may be entered on
a line. Comments may be included any place that blanks are allowed. The beginning of a comment is
indicated with (* and the termination of a comment is indicated with *). The SURE program prompts
the user for input by a line number followed by a question mark.

5.2.2. Constant definitions.The user may equate numbers to identifiers. Thereafter, these constant
identifiers may be used instead of the numbers. For example,

LAMBDA = 0.001;

RECOVER = 1E-4;

Constants may also be defined in terms of previously defined constants

GAMMA = 10*LAMBDA;

In general, the syntax is

name = expression;

wherename is a string of up to eight letters, digits, and underscores that begin with a letter andexpres-
sion is an arbitrary mathematical expression as described in  section 5.2.4.

5.2.3. Variable definition.To facilitate parametric analyses, a single variable may be defined. A
range is given for this variable. The SURE system will compute the system reliability as a function of
this variable. The following statement definesLAMBDA as a variable with range 0.001 to 0.009:

LAMBDA = 0.001 TO 0.009;

Only one such variable may be defined. A special constant,POINTS, defines the number of points
to be computed over this range. The method used to vary the variable over this range can be either geo-
metric or arithmetic and is best explained by example. SupposePOINTS = 4; then the geometric range

XV = 1 TO* 1000;

would useXV values of 1, 10, 100, and 1000, while the arithmetic range

XV = 1 TO+ 1000;
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would useXV values of 1, 333, 667, and 1000. An asterisk following theTO implies a geometric range,
while TO+ or simplyTO implies an arithmetic range.  In addition, theBY option is available.  With the
above syntax andBY increment, the value ofPOINTS is automatically set so that the value is varied by
adding or multiplying the specified  increment. For example,

LAMBDA = 1E-5 TO* 1E-2 BY 10;

setsPOINTS equal to 4 and uses the values of 1E-5, 1E-4, 1E-3, and 1E-2 forLAMBDA. The statement

CX = 3 TO+ 5 BY 1;

setsPOINTS equal to 3 and uses the values of 3, 4, and 5 forCX . In general, the syntax is

var = expressionTO s c expression BY increment ;

wherevar is a string of up to eight letters and digits beginning with a letter,expression is an arbitrary
mathematical expression, which is described in the  section 5.2.4, and the optionalc is a + or *. TheBY
clause is optional; if it is used, thenincrement is any arbitrary expression.

5.2.4. Expressions.When specifying transition or holding time parameters in a statement, arbitrary
functions of the constants and the variable may be used. The following operators may be used: + for
addition,− for subtraction, * for multiplication, / for division, and ** for exponentiation.

The following standard Pascal functions may be used:EXP(X) , LN(X) , SIN(X) , COS(X) ,
ARCSIN(X) , ARCCOS(X), ARCTAN(X), andSQRT(X) . Both ( ) and [ ] may be used for grouping in
the expressions. The following are permissible expressions:

2E-4
1.2*EXP(-3*ALPHA);
7*ALPHA + 12*L;
ALPHA*(1+L) + ALPHA**2;
2*L + (1/ALPHA)*[L + (1/ALPHA)];

 5.2.5. Slow transition description.A slow transition is completely specified by citing the source
state, the destination state, and the transition rate. The syntax is as follows:

source, dest = rate;

where source is the source state,dest is the destination state, andrate is any valid expression defining
the exponential rate of the transition. The following are valid SURE statements:

PERM = 1E-4;
TRANSIENT = 10*PERM;

1,2 = 5*PERM;
1,9 = 5*(TRANSIENT + PERM);
2,3 = 1E-6;

5.2.6. Fast transition description.To enter a fast transition, the following syntax is used:

source, dest = < mu, sig , frac  >;

wheremu defines the conditional mean transition time,sig defines the conditional standard deviation of
transition time,frac defines the transition probability,source defines the source state, anddest defines
the destination state.
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The parameterfrac is optional. If omitted, the transition probability is assumed to be 1.0, that is,
only one fast transition. All the following are valid:

2,5 = <1E-5, 1E-6, 0.9>;

THETA = 1E-4;

5,7 = <THETA, THETA*THETA, 0.5>;

7,9 = <0.0001,THETA/25>;

5.2.7. FAST exponential transition description.Often when performing design studies, experimental
data are unavailable for the fast processes of a system. In this case, some properties of the underlying
processes must be assumed. For simplicity, these fast transitions are often assumed to be exponentially
distributed. However, it is still necessary to supply the conditional mean and standard deviation to the
SURE program because these transitions are fast. If only one fast transition from a state occurs, then
these parameters are easy to determine. Suppose a fast exponential recovery occurs from state (1) to
state (2) with unconditional ratea

The SURE input is simply

1,2 = < 1/a, 1/a, 1 >;

In this case, the conditional mean and standard deviation are equivalent to the unconditional mean and
standard deviation. The above transition can be specified by using the following syntax:

1,2 = FAST a;

When multiple recoveries are present from a single state, then care must be exercised to properly
specify the conditional means and standard deviations required by the SURE program. Consider the
model in figure 17 where the unconditional distributions are

Figure 17.  Model of three competing fast transitions.
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The SURE input describing the previous model is

0,1 = < 1/(a+b+c), 1/(a+b+c), a/(a+b+c) >;

0,2 = < 1/(a+b+c), 1/(a+b+c), b/(a+b+c) >;

0,3 = < 1/(a+b+c), 1/(a+b+c), c/(a+b+c) >;

Note that the conditional means and standard deviations are not equal to the unconditional means
and standard deviations (e.g., the conditional mean transition time from state (0) to state (1) is not equal
to 1/a .) The following can be used to define the model in figure 17:

0,1 = FAST a;

0,2 = FAST b;

0,3 = FAST c;

The SURE program automatically calculates the conditional parameters from the unconditional
ratesa, b, andc . The user may mixFAST exponential transitions with other general transitions. How-
ever, care must be exercised in specifying the conditional parameters of the nonexponential fast recov-
eries to avoid inconsistencies. For more details see reference 1.

5.3. SURE Commands

In this section a brief summary of some of the SURE commands is given.

5.3.1. READ command.A sequence of SURE statements may be read from a disk file. The follow-
ing interactive command reads SURE statements from a disk file named sift.mod:

READ sift.mod;

If no file name extension is given, the default extension.mod  is assumed. A user can build a model
description file by using a text editor and then use theREAD command  to read it into the SURE
program.

5.3.2. RUN command.After a semi-Markov model has been fully described to the SURE program,
theRUN command is used to initiate the computation

RUNoutname;

The output is written to fileoutname. If outname is omitted the output is written to the user terminal.

5.3.3. LIST constant.The amount of information output by the program is controlled by this com-
mand. Four list modes are available.  ForLIST = 0; , no output is sent to the terminal, but the results
can still be displayed by using thePLOT command. ForLIST = 1; , only the upper and the lower
bounds on the probability of total system failure are listed. This is the default. ForLIST = 2 ;, the
probability bounds for each death state in the model are reported along with the totals. For
LIST = 3; , every path in the model and its probability of traversal is listed. The probability bounds
for each death state in the model are reported along with the totals.

5.3.4. START constant.The START constant is used to specify the start state of the model. If the
START constant is not used, the program will use the source state (i.e., the state with no transitions into
it) of the model, if one exists.

5.3.5. TIME constant.The TIME constant specifies the mission time. For example, when the user
setsTIME = 1.3 , the program computes the probability of entering the death states of the model
within time 1.3. The default value ofTIME is 10. All parameter values must be in the same units as the
TIME constant.
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5.3.6. PRUNE and WARNDIG constants.The time required to analyze a large model can often be
greatly reduced by model pruning. The SURE program automatically selects a pruning level upon
detection of the first death state. This feature can be disabled by setting theAUTOPRUNE constant to
zero,AUTOPRUNE = 0. The default value ofAUTOPRUNE is 1. Alternatively, the SURE user can
specify the level of pruning by using thePRUNE constant. A path is traversed by the SURE program
until the probability of reaching the current point on the path falls below the pruning level. For example,
if PRUNE = 1E-14  and the upper bound falls below1E-14  at any point on the path, the analysis of
the path is terminated and its probability is added to the upper bound. The sum of all  occupancy proba-
bilities of the pruned states is reported in the following format:

<prune x.xxx>

The SURE program will warn the user when the pruning process is too severe, that is, when the
pruning produces a result with less thanWARNDIG digits of accuracy. In this case, the upper bound is
still an upper bound, but it is not close to the lower bound. The default value ofWARNDIG is 2.

These commands are explained in more detail in section 11.

 5.4. Overview of  STEM and PAWS Programs

 The STEM (Scaled Taylor Exponential Matrix) and the PAWS (Padé Approximation With Scal-
ing) programs were developed at Langley Research Center for solving pure Markov models (i.e., all
transitions are exponentially distributed). The input language for these two programs is the same as for
the SURE program. The only major difference is that the fast recovery transition statement is inter-
preted differently. The following statement

source, dest = < mu, sig , frac  >;

is interpreted as

source, dest = frac/mu ;

wheresource is the source state,dest is the destination state,mu is an expression that defines the condi-
tional mean transition time,sig is an expression that defines the conditional standard deviation of transi-
tion time, andfrac is an expression that defines the transition probability. If the third parameterfrac is
omitted, a value of 1 is used.

For more information on the solution techniques used by these two reliability analysis programs,
see reference 11.

5.5. Introduction to SURE Mathematics

In this section, the bounding theorem upon which SURE is based is presented. First, some notation
is developed; then the details of the theorem are presented. This section can be omitted on first reading
because later sections do not depend upon the content of this section.

5.5.1. Path-step classification and notation.The presentation of the SURE bounding theorem is sim-
plified by first developing some notation. The theorem provides bounds on the death state probabilities
at a specified time. It is assumed that the system is initially in a single state. That is, the probability that
the system is in a single state at time 0 = 1.0.  The SURE program uses some additional techniques not
presented here that enables assignment of initial probability to multiple states. These techniques are dis-
cussed in section 16 and in the appendix.  This initial single state is called the start state. The SURE pro-
gram finds every path from the start state to a death state. The contribution of each path to system
failure is calculated separately by using the semi-Markov bounding theorem of White, which is
described in section 5.5.
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Let each state along the path be classified into one of three classes that are distinguished by the type
of transitions leaving the state. A state and all transitions leaving it will be referred to as a “path step.”
The transition on the path that is currently being analyzed will be referred to as the “on-path transition.”
The remaining transitions will be referred to as the “off-path transitions.” The classification is made on
the basis of whether on-path and off-path transitions are slow or fast. If no off-path transitions exist, the
path step is classified as if it contained a slow off-path transition.

5.5.2. Class 1 path step; slow on path, slow off path.If all transitions leaving the state are slow, then
the path step is class 1. The rate of the on-path exponential transition isλi. (See fig. 18.)  An arbitrary
number of slow off-path transitions can occur. The sum of their exponential transition rates isγ i. If any
off-path transitions are not slow, then the path step is in class 3. The path steps 1→ 2, 4→ 5, and 5→ 6
in the model of the triad plus one spare shown in figure 15 are examples of this class.

5.5.3. Class 2 path step; fast on path, arbitrary off path.If the on-path transition is fast, then the path
step is class 2. (See fig. 19.)  An arbitrary number of slow or fast off-path transitions may exist. As
before, the slow off-path, exponential transitions can be represented as a single transition with a rateε i
equal to the sum of all the slow off-path transition rates. The path step 2→ 4 in the model of the triad
plus one spare shown in figure 15 are examples. The distribution of the fast on-path transition isFi,1.
The distribution of time for thekth fast transition from state (i) is referred to asFi,k (i.e., the probability
that the next transition out of state (i)  goes into state (k) and  occurs within timet is Fi,k). Three measur-
able parameters must be specified for each fast transition: the transition probabilityρ(F*

i,k), the condi-
tional meanµ(F*

i,k), and the varianceσ2(F*
i,k), given that this transition occurs. The asterisk is used to

note that the parameters are defined in terms of the conditional distributions combined with definition.
Mathematically, these parameters are defined as follows:

 Experimentally, these parameters correspond to the fraction of times that a fast transition is suc-
cessful and the mean and the variance of the conditional distribution, given that the transition occurs.

Figure 18.  Class 1 path step.  Slow on path; slow off path.
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Note, in any experiment where competing processes in a system are studied, the observed empirical
distributions will be conditional. The time it takes a system to transition to the next state will only be
observed when that transition occurs. These expressions are defined independently of the exponential
transitionsε j . Consequently, the sum of the fast transition probabilitiesρ(F*

i,k) must be 1. In particu-
lar, if only one fast transition occurs, its probability is 1 and the conditional mean is equivalent to the
unconditional mean. (The SURE user does not have to deal explicitly with the unconditional distribu-
tionsFi,k.  However, to develop the mathematical theory, the distributions must be used.)

5.5.4. Class 3 path step; slow on path, fast off path.The on-path transition must be slow for a path
step to be categorized as class 3.  Both slow and fast off-path transitions can exist; however, at least one
off-path transition must be fast. (See fig. 20.) The path step 2→ 3 in the model of the triad plus one
spare shown in figure 15 are in this class. The slow on-path transition rate isαj. The sum of the slow
off-path transition rates isβj. As in class 2, the transition probabilityρ(G*

j,k), the conditional mean
µ(G*

j,k), and the conditional varianceσ2(G*
j,k) must be given for each fast off-path transition with dis-

tribution Gj,k. Two letters are used to help track whether the transition is a class 2 (labeledF) or class 3
(labeled G) in the current path.

In either case, the SURE user supplies the conditional mean, the conditional standard deviation, and
the transition probability. Although, the parameters described above suffice to specify a class 3 path
step to SURE, the mathematical theory is more easily expressed in terms of the holding time in the state.
The holding time in a state is the time the system remains in the state before it transitions to some other
state. The bounding theorem is expressed by using a slightly different holding time, which will be
referred to as “recovery holding time” to prevent confusion. The recovery holding time is the holding
time in the state with the slow exponential distributions removed. Because the slow exponential transi-
tions occur at a rate many orders of magnitude less than the fast transitions, the recovery holding time is

Figure 19.  Class 2 path step.  Fast on path; arbitrary off path.

Figure 20.  Class 3 path step.  Slow on path; fast off path.
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approximately equal to the traditional holding time. LetHj represent the distribution of the recovery
holding time in state (j)

Then the following parameters are used in the theorem:

These parameters are the mean and the variance of the holding time in state (j) without consideration
for the slow exponential transitions (i.e., with the slow exponential transitions removed). These parame-
ters do not have to be supplied to the SURE program. The SURE program derives these parameters
from the other available inputs, such asρ(G*

j,k), µ(G*
j,k), andσ2(G*

j,k), as follows:

The parametersρ(G*
j,k), µ(G*

j,k), andσ2(G*
j,k) are defined exactly  as the class 2 path step parameters.

Although the fast distributions are specified without consideration of the competing slow exponen-
tial transitions, the theorem gives bounds that are correct in the presence of such exponential transitions.
The parameters were defined in this manner to simplify the process of specifying a model. Throughout
the paper, the holding time in a state in which the slow transitions have been removed will be referred to
as “recovery holding time.” For convenience, when referring to a specific path in the model, the distri-
bution of a fast on-path transition will be indicated by a single subscript that specifies the source state.
For example, if the transition with distributionFj,k is the on-path transition from state (j), then it can be
referred to asFj , whereFj,k is thekth fast transition from state (j) andFj is the on-path fast transition
from state (j).

 5.5.5. SURE bounding theorem.With the classification and notation from the previous sections, the
bounding theorem can now be presented. The proof of this theorem has been published in references 1
and 12 and is not given in this paper.

Theorem:  The theorem of White states that the probabilityD(T) of entering a particular death state
within the mission timeT, following a path with k class 1 path steps,m class 2 path steps, andn class 3
path steps is bounded as follows (refs. 1 and 12):
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where

 for all ri, sj > 0 and∆ = r1 + r2 +...+rm + s1 + s2 ...+ sn and

 The theorem is true for anyri > 0 andsj > 0 provided that∆ < T. Different choices of these parame-
ters will lead to different bounds. The SURE program uses the following values ofri andsj:

These values have been found to give very close bounds in practice and are usually very near the opti-
mal choice (ref.1).

Two simple algebraic approximations forQ(T) were given by White in reference 13.  One approxi-
mation overestimates and one approximation underestimates, and are given respectively as

Both Qu(T) andQl(T) are close to Q(T) as long as (λi + γi) T is small.  That is, as long as the
mission time is short compared with the average lifetime of the components. The SURE program uses
the following slightly improved upper bound onQ(T):
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This bound is obtained by removing all the fast exponential transitions from theQ(T) model.
Because the path is shorter, the probability of reaching the death state is larger than the originalQ(T)
model. These algebraic bounds on Q(T) are used when theQTCALC option is set equal to zero. When
theQTCALC = 1 option is used, a differential equation solver is used to calculateQ(T) andQ(T − ∆).
If QTCALC = 2 (the default), then the SURE program automatically selects the most appropriate
method.

5.5.6. Algebraic analysis with SURE upper bound.The SURE upper bound can be used symboli-
cally, as well as numerically, to gain insight in the reliability properties of a system. This technique will
be illustrated by application to the model shown in figure 21.

In this model there are three death states ((3), (6), (8)) and three paths to death states:

   1→ 2 → 3

   1→ 2 → 4 → 5 → 6

   1→ 2 → 4 → 5 → 7 → 8

The SURE upper bound can be applied to each path to obtain an algebraic formula for the probabil-
ity of entering the death states within the mission time. The SURE algebraic upper bound is

The first path, 1→ 2 → 3 has two steps. The first step is a class 1 path step, and thus contributes
λi T/i = 3λT.  The second path step is a class 3, and thus, contributesαj µ(Hj ) = 2λµ. Hence,

The second path, 1→ 2 → 4 → 5 → 6 has four steps. The first step, 1→ 2, is a class 1 path step, and
thus contributesλi T/i = 3λT (cf. i = 1). The second step, 2→ 4, is a class 2 path step, and thus contrib-
utesρ(F*

i ). Because only one recovery exists,ρ(F*
i ) = 1. The third step, 4→ 5, is a class 1 path step,

and thus contributesλi T/i = 2λT/2 (cf. i = 2). The fourth path step is a class 3, and thus  contributes
αj µ(Hj) = λµ. Hence,

Figure 21.  Model of degradable triplex.
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In the third path, 1→ 2 → 4 → 5 → 7 → 8, the first three steps are the same as path 2. The fourth
step, 5→ 7, is a class 2 path step, and thus contributesρ(F*

i ). Because only one recovery transition
occurs from state (5),ρ(F*

i) = 1. The fifth step is a class 1 path step, and thus contributes λi T/i = λ T/ 3.
Hence,

From these formulas, the sensitivity of the system unreliability to the model parameters is immedi-
ately seen.  For example, partial derivatives, if desired, can easily be taken because the formulas are
algebraic.

6. Reconfiguration by Degradation

In this section, the technique of reconfiguration by degradation will be explored. The first example
is a simple degradablen-plex. Later sections introduce more complicated aspects, such as fail-stop dual
processors and self-test processors.

6.1. Degradable 6-Plex

Reconfiguration can be utilized with levels of redundancy greater than three. The Software Imple-
mented Fault Tolerance (SIFT) computer system is an example of such an architecture (ref. 14). The
SIFT computer initially contains six processors. At this level of redundancy, two simultaneously faulty
computers can be tolerated. As processors fail, the system degrades into lower levels of redundancy.
Thus, SIFT is a degradable 6-plex. It is convenient to identify the states of the system by an ordered pair
(NC,NF) , whereNC is the number of processors currently in the configuration andNF is the number
of faulty processors in the configuration. The semi-Markov model for the SIFT system is shown in
figure 22.  Three main concepts dictate the structure of this model

1.  Every processor in the current configuration fails at rateλ.

2. The system removes faulty processors with mean recovery timem.

3. A majority of processors in the configuration must not have failed  for the system to be safe.

A few subtle points must also be considered. First, this model implicitly assumes that the reconfigu-
ration process is independent of the configuration of the system. For example, the mean recovery time
from state (6,1) is the same as from states (5,1), (4,1), and (3,1).  A system in a degraded configuration
may recover slower (because less processing power is available) or faster (because fewer processors
remain to be examined to find the faulty one). To determine the speed of recovery in a degraded config-
uration would require extensive fault injection in numerous configurations and would be a very expen-
sive process. If these experiments were done, however, one could easily modify the model in figure 22
to contain this information. Second, the mean and the standard deviation of the recovery time from
states with two active faults is probably different from that of the states with only one active fault. Note
that in the model in figure 22, these transitions are labeled with<m_2,s_2> . These parameters would
have to be measured with double fault injections. In the absence of experimental data, it is convenient to
let m_2 = m/2 ands_2 = s/2 . If the detection and isolation and reconfiguration of the two faults
behave like two independent exponential processes, this assumption is reasonable. Actually the situa-
tion is quite complicated from a strict theoretical viewpoint. A semi-Markov model has  a memoryless
property, and thus, cannot capture the concept that the first reconfiguration process is already in
progress when the second fault arrives. The second fault carries the system into a new state where the
progress in reconfiguring the first fault is forgotten. The semi-Markov model thus overestimates
the time to reconfigure the first fault in the presence of a second fault. This assumption is usually con-
servative. The following SURE run reveals the sensitivity of the failure probability to the mean

P8 t( ) 3λT( ) 1( ) 2λT/2( ) 1( ) λT/3( )≈ λ3
T

3
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reconfiguration time. The SURE program requires that the states be defined by a single number. There-
fore, the state vectors must be mapped onto a set of integers.

% sure

 SURE V7.5   NASA Langley Research Center

 1? read sift

 2: LAMBDA = 5.0E-4;
 3: m = 1E-4 TO* 1E-1 BY 10;
 4: s = 6E-4;
 5: m_2 = m/2;
 6: s_2 = s/2;
 7: 1,2 = 6*LAMBDA;
 8: 2,3 = 5*LAMBDA;
 9: 3,4 = 4*LAMBDA;
10: 2,5 = <m,s>;
11: 5,6 = 5*LAMBDA;
12: 3,6 = <m_2,s_2>;
13: 6,7 = 4*LAMBDA;
14: 7,8 = 3*LAMBDA;
15: 6,9 = <m,s>;
16: 9,10 = 4*LAMBDA;
17: 7,10 =<m_2,s_2>;
18: 10,11 = 3*LAMBDA;
19: 10,12 = <m,s>;
20: 12,13 = 3*LAMBDA;
21: 13,14 = 2*LAMBDA;
22: 13,15 = <m,s>;
23: 15,16 = 1*LAMBDA;

Figure 22.  Semi-Markov model of SIFT computer system.
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      0.15 SECS. TO READ MODEL FILE
24? run

MODEL FILE = sift.mod                   SURE V7.5 26 Feb 90 14:23:14

   M          LOWERBOUND   UPPERBOUND   COMMENTS             RUN #1
-----------  -----------  -----------  ---------------------------
1.00000e-04  9.17736e-12  9.75265e-12
1.00000e-03  1.21626e-11  1.32216e-11
1.00000e-02  4.34597e-11  5.48450e-11
1.00000e-01  6.77898e-10  1.16481e-09

15 PATH(S) TO DEATH STATES
1.233 SECS. CPU TIME UTILIZED
26? exit

Finally, it should be noted that the SIFT computer degrades from a triplex to a simplex. Thus, the recon-
figuration transition out of state (3,1) carries the system into state (1,0).

6.2. Single-Point Failures

All previous models assumed that no single-point failures existed in the system; that is, one fault
arrival causes system failure.  When a system is not designed properly and is vulnerable to single-point
failures, the reliability can be seriously degraded. To understand the effects of a single-point failure,
consider the model in figure 23 of a TMR system with a single-point failure. The parameterC repre-
sents the fraction of faults that do not cause system failure alone. The sensitivity of the system reliability
to C can be seen in the following SURE run.

 $ sure

 SURE V7.4 NASA Langley Research Center

 1? read spf
 2: LAMBDA = 1E-4;
 3: C = .9 TO 1 BY 0.01;
 4: 1,2 = 3*LAMBDA*C;
 5: 2,3 = 2*LAMBDA;
 6: 1,4 = 3*(1-C)*LAMBDA;

      0.05 SECS. TO READ MODEL FILE
 7? run

Figure 23.  Model of TMR system with single-point failure.
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 MODEL FILE = spf.mod                  SURE V7.4 24 Jan 90 10:20:43

      C        LOWERBOUND   UPPERBOUND   COMMENTS              RUN #1
 -----------  -----------  -----------  ---------------------------
 9.00000e-01  3.02245e-04  3.02700e-04
 9.10000e-01  2.72320e-04  2.72730e-04
 9.20000e-01  2.42395e-04  2.42760e-04
 9.30000e-01  2.12470e-04  2.12790e-04
 9.40000e-01  1.82545e-04  1.82820e-04
 9.50000e-01  1.52620e-04  1.52850e-04
 9.60000e-01  1.22695e-04  1.22880e-04
 9.70000e-01  9.27702e-05  9.29100e-05
 9.80000e-01  6.28451e-05  6.29400e-05
 9.90000e-01  3.29200e-05  3.29700e-05
 1.00000e+00  2.99500e-06  3.00000e-06

2 PATH(S) TO DEATH STATES
0.667 SECS. CPU TIME UTILIZED
 8? exit

 The results of this run are plotted in figure 24. The plot reveals that probability of system failure is
very sensitive toC. The sensitivity is even greater as the number of processors is increased in the NMR
system.  To have a probability of failure less than 10−9 in a 5MR system composed of processors whose
failure rate is very low (10−5/hr), C must be greater than 0.999998. A 5MR system that is not subject to
single-point failure has a probability of failure of 1× 10−11.  See figure 25, which was produced by solv-
ing the following model:

LAMBDA = 1E-5;
N = 5;
X = 1E-10 TO* 1 BY 2;
C = 1-X;
1,2 = 5*C*LAMBDA;
1,7 = 5*(1-C)*LAMBDA;
2,3 = 4*C*LAMBDA;
2,8 = 4*(1-C)*LAMBDA;
3,4 = 3*LAMBDA;

Figure 24.  Failure probability as function ofC. Figure 25.  Failure probability of 5MR withλ = 10−5 as
function ofC.
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Experimental measurement of a parameter to such accuracy is easily shown to be impractical. Alter-
natively, a system with no single-point failures can be designed, and thus, remove this transition from
the model.

6.3. Fail-Stop Dual System

 When processors fail, they often either fail to produce an output (i.e., apparently halt) or produce an
incorrect answer that is so far from the correct answer that it would fail a simple reasonableness check.
In both cases, it is simple for a processor to detect its own failure with special circuitry and to halt its
processing. A processor with this capability is often referred to as a fail-stop processor.  Electronic cir-
cuitry that can recognize that one fail-stop processor has halted (e.g.,  no data arrives) and automatically
switch to an alternate fail-stop processor is simple to build. A system consisting of two fail-stop proces-
sors and this selection circuitry is called a dual system. This system is illustrated in figure 26.

The switch determines which output will be used. Reliability engineers sometimes make the mis-
take of assuming that this process will work correctly 100 percent of the time. However, most  fail-stop
processors cannot be guaranteed to always halt upon failure. For example, the failure can cause an erro-
neous answer that passes the reasonableness checks, or the failure can affect the ability of the processor
to detect the failure or to halt its processing or its output. In this  section,  the impact on system reliabil-
ity when a processor is not 100-percent fail stop will be investigated. SupposePFS is the probability
that a processor stops when it fails. The model in figure 27 describes such a system.

The system begins in state (1) where all components are operational. Either of two processors or the
switch itself could fail.  Useλp for the failure rate of the currently selected processor,λig for the proces-
sor that is currently being ignored, andλsw for the failure rate of the switch.  Usuallyλig will be equal to
λp; however,λig is used here to make the model clearer. The transition from state (1) to state (2)

Figure 26.  Fail-stop dual system.

Figure 27.  Model of fail-stop dual system.
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represents the failure of the processor that causes it to stop. BecausePFS is the fraction of times this
occurs, the rate of this transition is (PFS) λp. The cases where it does not fail stop lead to the failure
state (4). The rate of such failures is(1 - PFS) λp. The failure of the switch could also cause the sys-
tem to fail, so the total rate from state (1) to state (4) is(1 - PFS) λp + λsw. The failure of the cur-
rently unselected processor carries the system to state (5) with a rate ofλig.

Note that the sum of the rates of all  failure transitions from state (1) add up to the sum of the failure
rates of all nonfailed components (λp + λig + λsw).  This property should always be true for all opera-
tional states of a reliability model. State (2) represents the situation where the selected processor has
halted. Because the switch has not failed in this state, the system is able to make the switch to the alter-
nate. The transition from state (2) to state (3) represents the failure of the switch or the last processor.
State (3) is thus a death state. State (5) represents the state where the selected processor is still operating
correctly, but the unselected processor has failed. Thus, when the active processor fails (state (5) to
state (6)), the system has no working spare. Note also that the failure of the switch always leads to a
death state. Furthermore, every operational state is subject to this failure. Thus, every operational state
should be inspected to verify that a transition representing the failure of the switch leaving it occurs.

The plot of the SURE solution of this model is shown in figure 28. The statementPFS = 0 TO 1
BY 0.01  directs the SURE program to compute the probability of system failure as a function ofPFS.
The program solves the model for values ofPFS over the range from 0 to 1 in increments of 0.01.  The
reliability of the system is very sensitive to the probability of the fail-stop processor halting upon failure
andPFS must be much greater than 0.9 to have a significant improvement in reliability over a simplex
computer.

6.4. Self-Checking Pair Architecture

The previous section illustrated the sensitivity of reliability to the assumption of fail stop. Conse-
quently, approaches have been sought to achieve the fail-stop assumption with almost 100-percent cer-
tainty. One such approach is a self-checking pair architecture. In this system, four computers are

Figure 28.  Plot of fail-stop dual system unreliability and PFS.
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configured into two self-checking pairs. The self-checking pairs run in lock step mode. Upon any dis-
agreement of the outputs, the self-checking pair shuts itself down. Of course, special circuitry must be
used to perform the self-checking function, but techniques exist that can make such circuitry fail-safe.
That is, if the self checker fails, then the pair is shut down. The outputs of the two self-checking pairs
are sent to a selection switch. The self-checking pair serves as the fail-stop processor of the model in
figure 27. In such a system, it is not unreasonable to assume that the probabilityPFS, which the self-
checking pair does not stop, although it has failed, is the probability that both processors fail concur-
rently before the selection switch disconnects the pair. Clearly, such a probability is small but not zero.
This probability is intimately connected with fault latency and failure correlation, which will be further
investigated in later models. The model of section 6.3 applies to the system with two simple
modifications

1. ThePFS probability is very small.

2. The failure rate of the self-checking pair would likely be 2λp.

6.5. Degradable Quadraplex With Partial Fail Stop or Self Test

The question is often asked whether it is preferable to degrade a triad into a simplex or into a dual.
If a system degrades to a dual, the problem of determining which processor has failed must be
addressed.  If the best that can be done is guess with probability of 0.5 percent of success, the probabil-
ity of system failure is exactly the same as degrading to a simplex at the first failure. However, if the
probability of success in detecting the failed processor in the dual can be improved, then the system reli-
ability can be improved. One method of improvement is to take advantage of the fact that many failures
cause a processor to halt, which was done in the model in figure 27. Studies by McGough and Swern
have shown that typically 90 percent of CPU faults result in a processor halting (ref. 15). Although this
method is far from fail stop, this aspect of system failure can be utilized in the system design to increase
the reliability of a quadraplex system. The majority-voting system must be designed  to recognize the
absence of data. The details of such a voter will not be discussed here, but such a design is easily accom-
plished. In the model shown in figure 29,PFS is the probability that a fault causes the processor to halt.
The SURE input file is

Figure 29.  Degradable quadraplex with partial fail-stop.
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LAMBDA = 1e-4;           (* Failure rate of processor *)
MEANREC = 1e-2;          (* Mean reconfiguration time *)
STDREC = 1e-3;           (* Standard deviation of “ “ *)
MEANREC2 = 1.2e-2;       (* Mean reconfiguration time *)
STDREC2 = 1.4e-3;        (* Standard deviation of “ “ *)
PFS = 0 to 1 by .1;      (* Prob. fault halts processor *)

1,2 = 4*LAMBDA;
2,3 = 3*LAMBDA;
2,4 = <MEANREC,STDREC>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MEANREC2,STDREC2>;
7,8 = 2*PFS*LAMBDA;
8,9 = LAMBDA;
7,10 = 2*(1-PFS)*LAMBDA;

 Because the fail-stop capability is not used until the configuration has been reduced to two proces-
sors, it is most effective for long mission times. The result of a SURE run with mission time of 1000 hr
is shown in figure 30.

Another approach is to use a self-test program to diagnose the faulty processor in the dual. This sys-
tem is modeled in the same manner. In this case,PFS is the probability that the self-test program cor-
rectly diagnoses the faulty processor and the system successfully reconfigures.

6.6. Incomplete Reconfiguration

Suppose a system is designed with incomplete detection of faults. In other words, some faults can-
not be detected by the system. Of course, this does not lead to immediate system failure. The good pro-
cessors will still out vote the bad processor. However, the reconfigurable system will behave like a
nonreconfigurable system in the presence of these faults.  Assume that the fraction of faults that are
detectableD is known.  This situation is sometimes referred to as coverage. Because many other defini-
tions of this term exist,  it will not be used in this paper. The SURE model is

Figure 30.  Failure probability of degradable quadraplex with partial fail stop.
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LAMBDA = 1e-4;              (* Failure rate of processor *)
MEAN = 1e-2;                (* Mean reconfiguration time *)
STD = 1e-3;                 (* Standard deviation of “ “ *)
D = 0 TO+ 1 by 0.05;

1,2 = 4*LAMBDA*D;
1,12 = 4*LAMBDA*(1-D);
2,3 = 3*LAMBDA;
2,4 = <MEAN,STD>;
4,5 = 3*LAMBDA*D;
4,15 = 3*LAMBDA*(1-D);
5,6 = 2*LAMBDA;
5,7 = <MEAN,STD>;
7,8 = LAMBDA;

12,13 = 3*LAMBDA;
15,16 = 2*LAMBDA;

The technique decomposes the fault-arrival process into two transitions. For example, if the total failure
rate out of state is 4λ, then two transitions are produced. One transition has a rate of 4Dλ and the other
has 4 (1− D)λ. This model is shown in figure 31. The probability of failure as a function ofD is shown
in figure 32.

7. Reconfiguration By Sparing

Three categories of spares will be defined: cold spares, warm spares, and hot spares. Some systems
are designed with spares that are unpowered until brought into the active configuration. This approach is
used because unpowered (cold) spares usually have a lower failure rate than powered (hot) spares. If the
failure rate of the inactive spare is the same as an active processor, it is a hot spare. If the failure rate of
an inactive spare is zero, then it is  a cold spare. If the failure rate is somewhere in between zero and the
active processor rate, it is a warm spare. Ifλs is the failure rate of an inactive spare andλp is the failure

Figure 31.  Degradable quadraplex with incomplete
reconfiguration.

Figure 32.  Plot of degradable quadraplex with incomplete
reconfiguration.
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rate of an active processor, then the cold spare isλs = 0, the warm spare is 0 <λs < λp, and the hot spare
is λs = λp.

The disadvantage of an unpowered spare (whether cold or warm) is that it must be initialized during
reconfiguration, whereas a hot spare can be maintained with memory already loaded. This situation can
lead to a longer reconfiguration time. Thus, the model parameter values will differ with the strategy
used. Some reliability programs, such as CARE III, explicitly assume that the spares are hot (ref. 16).

7.1. Triad With Two Cold Spares

In this model, a new form of reconfiguration is investigated. Instead of degrading the configuration
upon detection of a faulty processor, a spare processor is brought into the configuration to replace the
faulty one. For simplicity, in this model it is assumed that the spares do not fail while not in the active
configuration. The issues associated with failing spares will be considered in sections 7.2, 9.2, 9.3,
and 9.4.

In the model shown in figure 33, the reconfiguration process is assumed to be described by distribu-
tion F(t), which is assumed to be independent of the system state. The SURE input is

LAMBDA = 1e-4;          (* Failure rate of processor *)
MEANREC = 1e-2;         (* Mean reconfiguration time *)
STDREC = 1e-3;          (* Standard deviation of reconfig. time *)

1,2 = 3*LAMBDA;
2,3 = 2*LAMBDA;
2,4 = <MEANREC,STDREC>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MEANREC,STDREC>;
7,8 = 3*LAMBDA;
8,9 = 2*LAMBDA;

State (1) of this model represents the initial system with three active processors and two spare pro-
cessors. The system is in state (2) when one of the three active processors has failed.  Two transitions
leave state (2). One transition is near-coincident failure of one of the two remaining active processors.
The second transition is the replacement of the failed active processor with a spare. In state (4), the sys-
tem consists of three active processors plus one remaining cold spare. Once a cold spare processor is
brought into the active configuration, it has the same failure rate as the other active processors. Thus,

Figure 33.  Model of triplex with two cold spares.
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the transition from state (4) to state (5) has rate 3*λ. State (5) has the same transitions leaving it as
state (2). Once the system reaches state (7),  no cold spare processors remain.

7.2. Triad With Two Warm Spares

If  the system is assumed to have perfect detection of failed spare processors, the model developed
in section 7.1 can be easily modified to include spare failures. As shown in figure 34, this modification
consists of the addition of two transitions. The transition from state (1) to state (4) represents the failure
of one of the two spare processors before either of them is brought into the active configuration. The
rate for this transition is 2*γ, whereγ is the failure rate for a warm spare. The transition from state (4) to
state (7) represents the failure of the remaining spare processor after the first spare processor has either
failed or been brought into the active configuration to replace a failed active processor. The SURE input
is

LAMBDA = 1e-4;          (* Failure rate of active processor *)
GAMMA = 1e-5;           (* Failure rate of warm spare processor *)
MEANREC = 1e-2;         (* Mean reconfiguration time *)
STDREC = 1e-3;          (* Standard deviation of reconfig. time *)

1,2 = 3*LAMBDA;
1,4 = 2*GAMMA;
2,3 = 2*LAMBDA;
2,4 = <MEANREC,STDREC>;
2,5 = 2*GAMMA;
4,5 = 3*LAMBDA;
4,7 = GAMMA;
5,6 = 2*LAMBDA;
5,7 = <MEANREC,STDREC>;
5,8 = GAMMA;
7,8 = 3*LAMBDA;
8,9 = 2*LAMBDA;

The probability of failure as a function of the spare failure rate is plotted in figure 35 for three mis-
sion times: 10, 100, and 1000 hr. The same model can be used to analyze a system with hot spares by
changing the spare failure rate to equal the active processor failure rate.

In this section, it was assumed that all failed spare processors are detected by the system and no
state-dependent recovery rates exist in the model. These assumptions significantly simplified the

Figure 34.  Model of triplex with two warm spares.
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reliability models. In section 9, systems will be modeled without making these simplifying assumptions
and more complex systems will be investigated. These systems will use different reconfiguration, and
consist of several subsystems. As complexity is added to a system, it quickly becomes impractical to
enumerate all states and transitions of a model by hand. In section 8, a simple but expressive language is
introduced for specifying Markov or semi-Markov models. This language serves as the input language
for the ASSIST computer program that automatically generates the states and the transitions of the
model. The output of the ASSIST program can be directly processed by the SURE program.

8. The ASSIST Model Specification Language

A computer program was developed at Langley Research Center to automatically generate semi-
Markov models from an abstract, high-level language. This program, named the Abstract Semi-Markov
Specification Interface to the SURE Tool (ASSIST), is written in the C programming language and runs
on the VMS and the Unix operating systems (refs. 17 and 18). The ASSIST program generates a file
containing the generated semi-Markov model in the format needed for input to a number of Markov or
semi-Markov reliability analysis programs developed at Langley, such as SURE or PAWS.

The abstract language used for input to ASSIST is described in this section. Only the features of the
language necessary for understanding the models in this paper are presented. For a description of the
complete input language or for more detailed information about ASSIST, see reference 17. Readers
already familiar with the ASSIST language can  proceed to section 9.

 The ASSIST program is based on concepts used in the design of compilers. The ASSIST input lan-
guage is used to define rules for generating a model. These rules are first applied to a start state. The
rules create transitions from the start state to new states. The program then applies the rules to the newly
created states. This process is continued until all states are either death states or have already been pro-
cessed. The rules in the ASSIST language describe the failure and the recovery processes of the system.
Often even the most complex characteristics of a system can be described by relatively simple rules.
The models only become complex when these few rules combine many times to form models with large

Figure 35.  Failure probability of triplex with two warm spares.
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numbers of states and transitions between them. The abstract description is useful for communicating
and validating the system model, as well as for model generation. Also, the process of describing a sys-
tem in this abstract language forces the reliability engineer to clearly understand the fault tolerance
strategies of the system.

The ASSIST input language can be used to describe any state-space model. Its full generality makes
it useful for specifying Markov and semi-Markov models, even when it is not necessary to generate the
model. The ASSIST language can serve as a convenient vehicle for discussing and analyzing complex
state-space models without having to specify all  states and transitions of the model by enumeration.

8.1. Abstract Language Syntax

A formal description of this language is not presented. Nevertheless, a few conventions must be
defined to facilitate description of the language:

1. All reserved words will be capitalized in typewriter print.

2. Lowercase words that are in italics indicate items that are to be replaced by something defined
elsewhere.

3. Items enclosed in double square brackets  can be omitted.

4. Items enclosed in braces { } can be omitted or repeated as many times as desired.

The basic language consists of seven statements:

1.  The constant-definition statement

2. TheSPACE statement

3. TheIMPLICIT  statement

4. TheSTART statement

5.  TheDEATHIF statement

6. ThePRUNEIF statement

7. TheTRANTO statement

Each statement is discussed in the following sections.

8.1.1. Constant-definition statement.A constant-definition statement equates an identifier consisting
of letters and digits to a number. For example

LAMBDA = 0.0052;
RECOVER = 0.005;

Once defined, an identifier can be used instead of the number it represents. In the following sections, the
phrase “const” is used to represent a constant, which can be either a number or a constant identifier.
Constants can also be defined in terms of previously defined constants

LAMBDA = 1E-4;
GAMMA = 10*LAMBDA;

 In general the syntax is

ident = expression;

whereexpression is a legal FORTRAN/Pascal expression. Both ( ) and [ ] can be used for grouping in
the expressions. The following statements contain legal expressions

ALPHA = 1E-4;
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RECV = 1.2*EXP(-3*ALPHA);
DELTA = 1.2*[(ALPHA + 2.3E-5)*RECV + 1/ALPHA];

All constant definitions are printed in the SURE model file so that the definitions may be used by the
SURE program. In addition, any statements in the ASSIST input file that are enclosed within double
quotes are copied directly into the SURE model file and are not otherwise processed by the ASSIST
program. For example, if a user wished to be prompted for the value ofγ by the SURE program instead
of by the ASSIST program and to see the effects of varying the value ofλ exponentially, the following
statements could be included in the ASSIST input file:

"INPUT GAMMA;"
"LAMBDA = 1E-4 TO* 1E-9;"

 State-space variables may not be used in constant-definition expressions because the variables do
not remain constant throughout model generation.  An expression containing state-space variables can
be equated to an identifier by using theIMPLICIT  statement, which are described in section 8.1.3.

8.1.2. SPACE statement.This statement is used to specify the state space on which the Markov
model is defined. Essentially, the state space is defined by ann-dimensional vector with each compo-
nent of the vector defined as an attribute of the system being modeled. In the SIFT-like architecture
example shown in figure 22, the state space is(NC,NF) . This would be defined in the abstract language
as

SPACE = (NC: 0..6, NF: 0..6);

The 0 . . 6 represents the range of values over which the components can vary. The lower bound of
the range must be greater than or equal to zero. The upper bound must be greater than the lower bound
and less than or equal to 255. This maximum upper bound value can be easily changed by modifying a
constant and recompiling the ASSIST program. The number of components (i.e., the dimension of the
vector space) can be as large as desired.  In general the syntax is

SPACE = ( ident : const. . const  , ident : const . .const );

The range specification is optional and defaults to a range from 0 to 255. The identifiersident that are
used in theSPACE statement are referred to as the state-space variables.

8.1.3. IMPLICIT statement.The IMPLICIT  statement is used to define a quantity that is not in the
state space itself, but is a function of the state space.  Earlier versions of ASSIST did not have the
IMPLICIT  statement and allowed the user to equate an identifier to an expression containing state-
space variables by using the same syntax as the constant-definition statement. The value of the implicit
function is based upon constants and state-space variables.

For example, ifNWP is a state-space variable representing the number of working processors and
NI  is a constant denoting the number of processors initially, then the declaration

IMPLICIT NFP[NWP] = NI - NWP;

definesNFP, which denotes the number of failed processors. The number of failed processors is defined
to be the difference between the initial number and the current number of working processors. The
implicit function can be referenced as illustrated in the followingDEATHIF statement:

DEATHIF NWP <= NFP;

The IMPLICIT  statement equates an identifier to an expression containing variables.  Every vari-
able used in the expression must be spelled out in either the state-space variable list or the optional
parameter list. In general the syntax is

IMPLICIT ident[ state-space-variable-list ] (parameter-list )  = expression;
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The statement state-space-variable-list is made up of one or more state-space-variable identifiers
separated by commas. The identifiers must already have been defined in aSPACE statement. All state-
space variables that are referenced in the expression of anIMPLICIT  statement must be listed in the
state-space-variable list.

The optional parameter-list is used to declare an implicit function that is also a function of specified
parameters. Any variables, such asFOR index variables, that are referenced in the expression of an
IMPLICIT  and are not state-space variables must be listed in the optional parameter list.

Theexpression of theIMPLICIT  definition is the expression defining the value as a function of the
specified parameters and the state-space variables.

The implicit function may be invoked inTRANTO, DEATHIF, PRUNEIF, or FOR statements or in
later IMPLICIT  definitions by giving its name followed by the values for each parameter in parenthe-
ses. A passed value can be a number, a named constant, a variable, or an expression. If theIMPLICIT
definition does not include a parameter list, theIMPLICIT  is invoked by its name alone.

8.1.4. START statement.This statement indicates the state from which the ASSIST program will ini-
tiate the recursive model generation. This state usually corresponds to the initial state of the system that
is being modeled. That is, the probability the system is in this state at time 0 = 1. In the SIFT-like archi-
tecture example shown in figure 22, the initial state is (6,0). This initial state is specified in the abstract
language by

START = (6,0);

In general the syntax is

START = ( const{ , const} );

The dimension of the vector must be the same as in theSPACE statement.

8.1.5. DEATHIF statement.TheDEATHIF statement specifies which states are death states, that is,
absorbing states in the model. The following is an example in the space(DIM1: 2..4, DIM2:
3..5)

DEATHIF (DIM1 = 4) OR (DIM2 = 3);

This statement defines states (4,3), (4,4), (4,5), (2,3), and (3,3) as death states. In general, the syntax is

DEATHIF expression;

The expression in this statement must be a Boolean expression. A Boolean expression may use the logi-
cal operatorsAND, OR, andNOT.

8.1.6. TRANTO statement.This statement is the most important statement in the language. It is used
to describe, and consequently, generate the model in a recursive manner. The following statement gen-
erates all fault-arrival transitions in the model shown in figure 22:

IF NC > NF TRANTO (NC, NF+1) BY (NC-NF)*LAMBDA;

The simplest syntax for aTRANTO statement is

IF expressionTRANTOdestinationBYexpression;

The first expression following theIF  must be Boolean. Conceptually, this expression determines
whether this rule applies to a particular state. For example, in the state-space expression
SPACE = (A1: 1..5, A2: 0..1) , the expression(A1 > 3) AND (A2 = 0)  is true for
states (4,0) and (5,0) only.
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The destination vector following theTRANTO reserved word defines the destination state of the
transition to be added to the model. The destination state can be specified by using positional or
assigned values.

The syntax for specification of the destination by positional values is as follows:

(expression, {, expression})

where the listed expressions define each state-space variable value for the destination state. An expres-
sion must be included for every state-space variable defined in theSPACE statement, which includes
every array element. Each expression within the parentheses must evaluate to an integer. For example, if
the state space is(X1, X2)  and the source state is(5,3) , then the vector(X1+1, X2-1)  refers to
(6,2) .

The syntax for specification of the destination by assigned values is

ident = expression {, ident = expression }

whereident is a state-space variable andexpression is an integer expression. The assignments define the
destination state of a transition by specifying the change in one or more state-space variable values from
the source state to the destination state. There can be as many assignments as state-space variables.
State-space variables that do not change need not be specified. The two syntaxes cannot be mixed in the
same statement and thedestination cannot be within parentheses when assigned values are to be used.

 The expression followingBY indicates the rate of the transition to be added to the model. This
expression must define a real number. The user may include constant names in the rate statement that
are not defined in the ASSIST file. These names are simply copied into the rate expressions in the
model file to be defined during execution of the SURE program. The ASSIST program also allows the
user to concatenate identifiers or values in the rate expression by using the ^ character. The use of this
feature is demonstrated in section 13.5.

The condition expression of theTRANTO statement can be nested as follows:

IF expressionTHEN

trantos

ELSE

trantos

ENDIF;

wheretrantos is one or moreTRANTO statements orTRANTO clauses and where aTRANTO statement is

IF expressionTRANTOdestinationBYexpression;

and aTRANTO clause isTRANTO destinationBYexpression;

 A TRANTO clause may not appear by itself without a condition expression. If theIF  is not fol-
lowed by aTHEN, then only oneTRANTO clause may be included and noELSE clause orENDIF may
be used. If theIF  is followed by aTHEN, then an optionalELSE clause may be included and theIF
statement must be terminated with anENDIF. TheTHEN clause and the optionalELSE clause may con-
tain multipleTRANTO statements. Every rate expression must be followed by a semicolon and the end
of the entire nested statement must be followed with a semicolon.

 State-space variables may be used in any of the expressions of theTRANTO statement. The value of
a state-space variable is the corresponding value in the source state to which theTRANTO statement is
being applied. For example, if theTRANTO statement is being applied to state(4,5)  and the state
space was defined bySPACE = (A: 0..10, Z: 2..15) , thenA = 4  andZ = 5 .
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8.1.7. Model generation algorithm.The ASSIST program generates the model in accordance with
the following algorithm:

Initialize READY-SET to contain the start state only.

WHILE READY-SET is not emptyDO

Select and remove a state fromREADY-SET

IF  the selected state does not satisfy aDEATHIF or PRUNEIF statementTHEN

Apply eachTRANTO rule to the selected state as follows:

IF  theTRANTO if expression evaluates toTRUE THEN

Add the transition to the model.

IF  the destination state is new, add it to theREADY-SET

ENDIF

ENDIF

ENDWHILE

The ASSIST program builds the model from the start state by recursively applying the transition
rules. A list of states to be processed, theREADY-SET, begins with only the start state. Before applica-
tion of a rule, ASSIST checks all death conditions to determine whether the current state is a death state.
Because a death state denotes system failure, no transitions can leave a death state. EachTRANTO rule
is then evaluated for the nondeath state. If the condition expression of theTRANTO rule evaluates to true
for the current state, then the destination expression is used to determine the state-space variable values
of the destination state. If the destination state has not already been defined in the model, then the new
state is added to theREADY-SET of states to be processed. The rate of the transition is determined from
the rate expression and the transition description is printed to the model file. When allTRANTO rules
have been applied to it, the state is removed from theREADY-SET. When theREADY-SET is empty,
then all possible paths terminate in death states and model building is complete.

8.2. Illustrative Example of SIFT-Like Architecture

Now the model shown in figure 22 can be specified in the ASSIST language

NP = 6;               (* Number of processors initially *)
LAMBDA = 1E-4;        (* Fault arrival rate *)
DELTA = 3.6E3;        (* Recovery rate *)

SPACE = (NC: 0..NP,   (* Number processors in configuration *)
         NF: 0..NP);  (* Number faulty processors *)

START = (NP,0);

IF NC > NF TRANTO (NC,NF+1) BY (NC-NF)*LAMBDA; (* Fault arrivals *)
IF NF > 0 TRANTO (NC-1,NF-1) BY FAST NF*DELTA; (* System recovery *)

DEATHIF 2*NF >= NC;    (* System failure if majority not working *)

The first three lines equate the identifiersNP, LAMBDA, andDELTA to specific values. The next two
lines define the state space with theSPACE statement. For this system, two attributes suffice to define
the state of the system. The first attributeNC is the number of processors currently in the configuration.
The second attributeNF is the number of faulty processors in the configuration.

The SPACE statement declares that the state space is two-dimensional. The first dimension is
namedNC and has domain 0 toNP.  The second dimension isNF and has domain 0 toNP. TheSTART
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statement declares that the construction of the model will begin with the state(NP,0) . The next two
TRANTO statements define the rules for building the model. Informally these rules are

1. Every working processor in the current configuration fails at rateLAMBDA.

2. The system removes faulty processors at rateDELTA.

These informal rules are easily converted into ASSIST statements. The phrase “Every working pro-
cessor in the current configuration” becomes

IF NC > NF

Note that ifNC is greater thanNF,  at least one working processor remains, so a transition should be cre-
ated. The word “fails” is captured by

TRANTO NF = NF + 1

This statement says that the destination state is obtained from the current state by incrementing the
NF component by one. The phrase “at rateLAMBDA” is captured byBY (NC-NF)*LAMBDA.

This statement declares that the rate of the generated transition is(NC-NF)*LAMBDA . The identi-
fier LAMBDA, which represents the failure rate, is multiplied by(NC-NF)  because any of the working
processors can fail. Each processor fails at rateLAMBDA. Therefore, the rate that any processor fails is

(NC-NF)*LAMBDA

 The second rule is translated into ASSIST syntax in a similar manner. A faulty processorNF > 0
is removed (i.e.,NC = NC - 1 andNF = NF - 1) at rateDELTA (total rate isNF*DELTA). There-
fore, the recovery rule is

IF NF > 0 TRANTO (NC-1,NF-1) BY FAST NF*DELTA; (* system recovery *)

The keywordFAST alerts the SURE program that this transition is a fast recovery and not a failure.
The SURE program assumes that the transition is exponentially distributed with rateNF*DELTA and
automatically calculates the mean and the standard deviation. When experimental data are not available,
it is usually convenient to assume that the recoveries are exponential. Later, after the recovery time dis-
tribution has been measured, the actual means and standard deviations may be used. When multiple
simultaneous recoveries occur, that isNF > 1 , it is also convenient to assume that the recoveries are
independent. The rate of recovery of the first of two or more competing exponential recoveries can be
obtained by adding their rates. A brief derivation of this result is given in section 3.1 For a more detailed
treatment of competing recoveries, consult a standard text that includes a discussion of order statistics,
such as reference 19. In this case, because all recoveries have the same rate, the rate isNF*DELTA.

 TheDEATHIF statement defines the system failure states. Informally, if two times the number of
faulty processors is greater than or equal to the number of processors in the configuration, the system
fails. This is translated into

DEATHIF 2*NF >= NC;

9. Reconfigurable Triad Systems

 In this section, systems that use both sparing and degradation to accomplish reconfiguration will be
explored.  In the first example, a triad with cold spares, the reconfiguration process changes when the
supply of spares is exhausted. The later examples add detail and more closely capture the behavior of
the spares. The models in this section demonstrate the flexibility of the semi-Markov modeling
approach.
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9.1. Triad With Cold Spares

A system consisting of a triad with a set of cold spares (spares that do not fail while inactive) will be
explored. The number of initial spares is defined by using a constant,NSI . This definition allows the
initial number of spares to be changed by altering only one line of the ASSIST input. (Although only
one line changes in the input file, the size of the model generated varies significantly as a function of
this parameter.) For simplicity, it is assumed in this section that spares do not fail until they become
active. The system replaces failed processors with spares until all spares are depleted. Then the system
degrades to a simplex.

NSI = 3; (* Number of spares initially *)
LAMBDA = 1E-4;       (* Failure rate of active processors *)
MU = 7.9E-5;   (* Mean time to replace with spare *)
SIGMA = 2.56E-5;     (* Stan. dev. of time to replace with spare *)

MU_DEG = 6.3E-5;     (* Mean time to degrade to simplex *)
SIGMA_DEG = 1.74E-5; (* Stan. dev. of time to degrade to simplex *)

SPACE = (NW: 0..3,   (* Number of working processors *)
NF: 0..3,  (* Number of failed active processors *)
NS: 0..NSI); (* Number of spares *)

START = (3,0,NSI);

IF NW > 0                  (* Processor failure *)
   TRANTO (NW-1,NF+1,NS) BY NW*LAMBDA;

IF (NF > 0) AND (NS > 0)   (* Non-failed spare becomes active *)
   TRANTO (NW+1,NF-1,NS-1) BY <MU,SIGMA>;

IF (NF > 0) AND (NS = 0)   (* No more spares, degrade to simplex *)
TRANTO (1,0,0) BY  <MU_DEG,SIGMA_DEG>;

DEATHIF NF >= NW;

The first statement defines a constantNSI , which represents the number of initial spares. The value
of this constant can be changed to generate models for systems with various numbers of initial spares.

The next five statements define constants that are not used directly by ASSIST, but are passed along
verbatim to SURE for computation purposes. TheSPACE statement defines the domain of the state
space. For this model, a three-dimensional space is needed. The components of the space areNW (num-
ber of working processors in the active configuration),NF (number of failed processors in the active
configuration), andNS (number of spares available). The initial configuration is defined with the
START statement(3,0,NSI) , which indicates thatNW = 3, NF = 0,  andNS = NSI  initially.
The next three statements define the rules that are used to build the model. The first of these statements
defines processor failure.

As long as working processors remain (NW > 0 ), the rule adds a transition. The destination state is
derived from the source state according to the formula  (NW-1, NF+1, NS). This statement is shorthand
notation forNW = NW-1, NF = NF+1, NS = NS . The rate of the resulting transition is
NW*LAMBDA. For example, if the current state were(2,1,3) , this rule would generate a transition
to (1,2,3)  with rate 2*LAMBDA.  The next rule only applies to states where(NF > 0) AND
(NS > 0) .  That is, states with a failed processor and with available spares. The destination state is
derived from the current state by the formula(NW+1, NF-1, NS-1) . That is, the number of work-
ing processorsNW is increased by one, the number of faulty processorsNF is decremented and the num-
ber of sparesNS is decremented. This rule corresponds to the replacement of a faulty processor with a
spare.
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The lastTRANTO rule describes how the system degrades to a simplex. This degradation occurs
when no spares are available and a processor has failed,  that is,(NF > 0) AND (NS = 0) . The
transition is to the state(1,0,0) . The transition occurs according to a distribution with meanMU_DEG
and standard deviationSIGMA_DEG.  This term is given in SURE notation

<MU_DEG, SIGMA_DEG>

Finally, the conditions defining the death states are given. The formulaNF >= NW defines the
states that are death states, that is, whenever the number of faulty processors are greater than or equal to
the number of  working processors.

Note that in this model, the method of counting is different from the model in section 8.2. Rather
than counting the number of processors in the configuration and the number of faulty processors (NC
and NF), the number of working processors and the number of faulty processors (NW and NF) are
counted. The number of active processors can be obtained by adding the number of faulty processors to
the number of working ones (NC = NF + NW). Thus, these methods are essentially the same and the
choice between the two is merely a matter of preference. In this paper, both methods of counting will be
used.

 The following session was performed on this model and stored in filetpnfs.ast :

$ assist tpnfs
ASSIST VERSION 7.1                      NASA Langley Research Center
PARSING TIME = 0.17 sec.
generating SURE model file...
RULE GENERATION TIME = 0.01 sec.
NUMBER OF STATES IN MODEL = 10
NUMBER OF TRANSITIONS IN MODEL = 13
5 DEATH STATES AGGREGATED INTO STATE 1

$ sure

 SURE V7.9.8 NASA Langley Research Center

 1? read tpnfs

 2: NSI = 3;
 3: LAMBDA = 1E-4;
 4: MU = 7.9E-5;
 5: SIGMA = 2.56E-5;
 6: MU_DEG = 6.3E-5;
 7: SIGMA_DEG = 1.74E-5;

 8:
 9:
10:     2(* 3,0,3 *),     3(* 2,1,3 *)       = 3*LAMBDA;
11:     3(* 2,1,3 *),     4(* 3,0,2 *)       = <MU,SIGMA>;
12:     3(* 2,1,3 *),     1(* 1,2,3 DEATH *) = 2*LAMBDA;
13:     4(* 3,0,2 *),     5(* 2,1,2 *)       = 3*LAMBDA;
14:     5(* 2,1,2 *),     6(* 3,0,1 *)       = <MU,SIGMA>;
15:     5(* 2,1,2 *),     1(* 1,2,2 DEATH *) = 2*LAMBDA;
16:     6(* 3,0,1 *),     7(* 2,1,1 *)       = 3*LAMBDA;
17:     7(* 2,1,1 *),     8(* 3,0,0 *)       = <MU,SIGMA>;
18:     7(* 2,1,1 *),     1(* 1,2,1 DEATH *) = 2*LAMBDA;
19:     8(* 3,0,0 *),     9(* 2,1,0 *)       = 3*LAMBDA;
20:     9(* 2,1,0 *), 10(* 1,0,0 *)       = <MU_DEG,SIGMA_DEG>;
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21:     9(* 2,1,0 *),     1(* 1,2,0 DEATH *) = 2*LAMBDA;
22:    10(* 1,0,0 *),     1(* 0,1,0 DEATH *) = 1*LAMBDA;
23:
24: (* NUMBER OF STATES IN MODEL = 10 *)
25: (* NUMBER OF TRANSITIONS IN MODEL = 13 *)
26: (* 5 DEATH STATES AGGREGATED INTO STATE 1 *)

      0.02 SECS. TO READ MODEL FILE

27? run

MODEL FILE = tpnfs.mod              SURE V7.9.8 11 Apr 94 10:26:41

             LOWERBOUND  UPPERBOUND  COMMENTS               RUN #1
----------- ----------- ----------- ------------------------------
            4.71208e-11 4.74718e-11

5 PATH(S) TO DEATH STATES
0.000 SECS. CPU TIME UTILIZED
28? exit

 The value ofNSI  can be changed to model systems with different numbers of spare processors ini-
tially. As shown in table 1, changing this single value can have a significant effect on the size of the
model generated.

9.2. Triad With Instantaneous Detection of Warm Spare Failure

 This section builds on the model in section 9.1 by allowing the spare to fail. However, the model is
still simplistic in that it assumes that the system always detects a failed spare. Thus, a failed spare is
never brought into the active configuration:

NSI = 3; (* number of spares initially *)

LAMBDA = 1E-4; (* failure rate of active processors *)
GAMMA = 1E-6; (* failure rate of spares *)
MU = 7.9E-5; (* mean time to replace with spare *)
SIGMA = 2.56E-5; (* stan. dev. of time to replace with spare *)
MU_DEG = 6.3E-5; (* mean time to degrade to simplex *)
SIGMA_DEG = 1.74E-5; (* stan. dev. of time to degrade to simplex *)

SPACE = (NW: 0..3, (* number of working processors *)
         NF: 0..3, (* number of failed active processors *)
         NS: 0..NSI);(* number of spares *)

Table 1.  Model Sizes for Triad of Processors With Spares

Number of spares Number of states Number of transitions
0 6 4
1 9 7
2 12 10
3 15 13

10 36 34
100 306 304



46

START = (3,0,NSI);

IF NW > 0                (* a processor can fail *)
   TRANTO (NW-1,NF+1,NS) BY NW*LAMBDA;

IF (NF > 0) AND (NS > 0) (* a spare becomes active *)
   TRANTO (NW+1,NF-1,NS-1) BY <MU,SIGMA>;

IF (NF > 0) AND (NS = 0) (* no more spares, degrade to simplex *)
   TRANTO (1,0,0) BY <MU_DEG,SIGMA_DEG>;

IF NS > 0                (* a spare fails and is detected *)
TRANTO (NW,NF,NS-1) BY NS*GAMMA;

DEATHIF NF >= NW;

Because failed spares can never be brought into the active configuration, tracking of these spares
once they fail is unnecessary. Thus, no state-space variable was defined to track the number of failed
spares and the transition depicting a spare failing simply decrements the number of spare processors by
one.

9.3. Degradable Triad With Nondetectable Spare Failure

In the previous models, it was assumed that spares do not fail while inactive or the spare failure was
assumed to be immediately detected. These assumptions are clearly nonconservative. In this example,
the other extreme will be investigated—not only can the spares fail, but the fault remains undetectable
until brought into the active configuration. The model in this example utilizes a failure rate for the
spares  that is different from the rate for  active  processors.

NSI = 3; (* number of spares initially *)
LAMBDA = 1E-4; (* failure rate of active processors *)
GAMMA = 1E-6; (* failure rate of spares *)
MU = 7.9E-5; (* mean time to replace with spare *)
SIGMA = 2.56E-5; (* stan. dev. of time to replace with spare *)

MU_DEG = 6.3E-5; (* mean time to degrade to simplex *)
SIGMA_DEG = 1.74E-5; (* stan. dev. of time to degrade to simplex *)
SPACE = (NW: 0..3, (* number of working processors *)
         NF: 0..3, (* number of failed active processors *)
        NWS: 0..NSI, (* number of working spares *)
        NFS: 0..NSI); (* number of failed spares *)

START = (3,0,NSI,0);
IMPLICIT PRG[NWS,NFS]= NWS/(NWS+NFS);(* prob. of switchingin good spare *)
   (* processor failure *)
IF NW > 0 TRANTO (NW-1,NF+1,NWS,NFS) BY NW*LAMBDA;

IF (NF > 0) AND (NWS+NFS > 0) THEN (* reconfigure using a spare *)
      (* a good spare becomes active *)

   IF NWS > 0 TRANTO (NW+1,NF-1,NWS-1,NFS) BY <MU,SIGMA,PRG>;
      (* a failed spare becomes active *)
   IF NFS > 0 TRANTO (NW,NF,NWS,NFS-1) BY <MU,SIGMA,1-PRG>;
ENDIF;

IF (NF > 0) AND (NWS+NFS = 0) (* no more spares, degrade to simplex *)
   TRANTO (1,0,0,0) BY <MU_DEG,SIGMA_DEG>;
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IF NWS > 0                       (* a spare fails *)
   TRANTO (NW,NF,NWS-1,NFS+1) BY NWS*GAMMA;

DEATHIF NF >= NW;

 When reconfiguration occurs, the probability of switching in a good spare instead of a failed spare
is equal to the current proportion of good spares to failed spares in the system. The implicit variable
PRG is used to calculate this probability. When all spares are good, the probability of switching in a
good spare is 1 and the probability of switching in a bad spare is 0. Conversely, when all spares have
failed, the probability of switching in a good spare is 0 and the probability of switching in a bad spare
is 1. The testsNWS > 0 andNFS > 0 check for these two cases and prevent the generation of a tran-
sition when it is inappropriate.

9.4. Degradable Triad With Partial Detection of Spare Failure

If the system is designed with off-line diagnostics for the spares, this must be included in the model.
Two aspects of an off-line diagnostic must be considered. First, a diagnostic usually cannot detect all
possible faults and  second, a diagnostic requires time to execute. The first aspect is sometimes referred
to as the coverage of the diagnostic. The term “coverage” will be avoided because it is used in  many
different ways, and thus, is confusing. Instead, the first aspect will be termed “fraction of detectable
faults” and will be assigned an identifierK.  The state space must be expanded to  track whether a fault
in a spare is detectable:

SPACE = (NW: 0..3,         (* number of working processors *)
         NF: 0..3,         (* number of failed active processors *)
         NWS: 0..NSI,      (* number of working spares *)
         NDFS: 0..NSI,     (* number of detectable failed spares *)
         NUFS: 0..NSI);    (* number of undetectable failed spares *)

The second aspect requires that a rule be added to generate transitions that decrement theNDFS
state-space variable with a fast general recovery distribution:

IF NDFS > 0 (* “detectable” spare-failure is detected *)
   TRANTO (NW,NF,NWS,NDFS-1,NUFS) BY <MU_SPD,SIGMA_SPD>;

No  transition is generated forNUFS faults.

The active processor failureTRANTO rule is the same as in the example in section 9.3, except that
the state space is larger. The spare failureTRANTO rule must be altered to include whether the failure is
detectable:

IF NWS > 0 THEN                (* a spare fails *)
   TRANTO (NW,NF,NWS-1,NDFS+1,NUFS) BY K*NS*GAMMA; (* detectable fault *)
   TRANTO (NW,NF,NWS-1,NDFS,NUFS+1) BY (1-K)*NS*GAMMA; (* undetectable fault *)
ENDIF;

Note that the rates are multiplied byK and(1-K) .

The reconfiguration rule is now more complicated than in the example in section 9.3. Three possi-
bilities exist:

1. The faulty active processor is replaced with a working spare.

2. The faulty processor is replaced with a spare containing a detectable fault.

3. The faulty processor is replaced with a spare containing an undetectable fault.

The probability of each case isPRW, PRD, andPRU, respectively, and  is defined as follows:

IMPLICIT PRW[NWS,NDFS,NUFS] = NWS/(NWS+NDFS+NUFS); (* working spare used *)
IMPLICIT PRD[NWS,NDFS,NUFS] = NDFS/(NWS+NDFS+NUFS);(* spare w/det. fault used *)
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IMPLICIT PRU[NWS,NDFS,NUFS] = NUFS/(NWS+NDFS+NUFS);
(* spare w/ undet. fault used *)

The reconfiguration rule is

IF (NF > 0) AND (NWS+NDFS+NUFS > 0) THEN (* a spare becomes active *)
   IF NWS > 0 TRANTO (NW+1,NF-1,NWS-1,NDFS,NUFS) BY <MU,SIGMA,PRW>;
   IF NDFS > 0 TRANTO (NW,NF,NWS,NDFS-1,NUFS) BY <MU,SIGMA,PRD>;
   IF NUFS > 0 TRANTO (NW,NF,NWS,NDFS,NUFS-1) BY <MU,SIGMA,PRU>;
ENDIF;

The complete model is

NSI = 3;                (* number of spares initially *)
LAMBDA = 1E-4;          (* failure rate of active processors *)
GAMMA = 1E-6;           (* failure rate of spares *)
MU = 7.9E-5;            (* mean time to replace with spare *)
SIGMA = 2.56E-5;        (* stan. dev. of time to replace with spare *)

MU_DEG = 6.3E-5;        (* mean time to degrade to simplex *)
SIGMA_DEG = 1.74E-5;    (* stan. dev. of time to degrade to simplex *)

K = 0.9;                (* fraction of faults that the
                           spare off-line diagnostic can detect *)

MU_SPD = 2.6E-3;        (* mean time to diagnose a failed spare *)
SIGMA_SPD = 1.2E-3;     (* standard deviation of time to diagnose *)

SPACE = (NW: 0..3,      (* number of working processors *)
   NF: 0..3,            (* number of failed active processors *)
   NWS: 0..NSI,         (* number of working spares *)
   NDFS: 0..NSI,        (* number of detectable failed spares *)
   NUFS: 0..NSI);       (* number of undetectable failed spares *)

IMPLICIT PRW[NWS,NDFS,NUFS] = NWS/(NWS+NDFS+NUFS); (* working spare is used *)
IMPLICIT PRD[NWS,NDFS,NUFS] = NDFS/(NWS+NDFS+NUFS); (* spare w/ det. f. used *)
IMPLICIT PRU[NWS,NDFS,NUFS] = NUFS/(NWS+NDFS+NUFS); (* spare w/ undet f. used *)

START = (3,0,NSI,0,0);

IF NW > 0               (* a processor can fail *)
   TRANTO (NW-1,NF+1,NWS,NDFS,NUFS) BY NW*LAMBDA;

IF NWS > 0 THEN           (* a spare fails *)
   TRANTO (NW,NF,NWS-1,NDFS+1,NUFS) BY K*NWS*GAMMA;     (* detectable fault *)
   TRANTO (NW,NF,NWS-1,NDFS,NUFS+1) BY (1-K)*NWS*GAMMA; (* undetectable fault *)
ENDIF;

IF (NF > 0) AND (NWS+NDFS+NUFS > 0) THEN (* a spare becomes active *)
   IF NWS > 0 TRANTO (NW+1,NF-1,NWS-1,NDFS,NUFS) BY <MU,SIGMA,PRW>;
   IF NDFS > 0 TRANTO (NW,NF,NWS,NDFS-1,NUFS) BY <MU,SIGMA,PRD>;
   IF NUFS > 0 TRANTO (NW,NF,NWS,NDFS,NUFS-1) BY <MU,SIGMA,PRU>;
ENDIF;

IF (NF > 0) AND (NWS+NDFS+NUFS = 0) (* no more spares, degrade to simplex *)
   TRANTO (1,0,0,0,0) BY <MU_DEG,SIGMA_DEG>;

IF NDFS > 0 (* “detectable” spare-failure is detected *)
   TRANTO (NW,NF,NWS,NDFS-1,NUFS) BY <MU_SPD,SIGMA_SPD>;

DEATHIF NF >= NW;

9.5. Byzantine Faults

In this section, the concept of Byzantine faults and Byzantine-resilient algorithms will be intro-
duced (refs. 20 and 21). Byzantine faults arise from the need to distribute single-source data, such as
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sensor data, to the replicated computational sites. Data values from sensors are unreplicated. Although,
redundant sensors may exist, they do not produce exactly the same result. Thus, if each processor were
connected to one of the redundant sensors, the processors would get different results. This difference is
unacceptable in a system that uses exact-match voting algorithms for fault detection. For example, if the
system uses voting for fault detection as well as fault masking, Byzantine faults can cause the system to
reconfigure  a working processor.

Furthermore, the problem is not solved by having each processor read all redundant sensors.
Because the redundant processors run off of different clocks,  the processors would access the sensors at
slightly different times and receive different results. Consequently, a signal-processing algorithm is run
on each processor to derive a trustworthy value from the set of redundant sensors. This algorithm neces-
sitates that each sensor be distributed to all redundant processing sites in a consistent manner. Suppose
the sensor value is read and stored. If a failure in the transmission medium between this value and the
redundant sites occurs, different values may be received by the good processors.

  For each processing site to be guaranteed to receive the same set of raw values, special Byzantine-
resilient algorithms must be used to distribute the single-source value. The algorithm depends funda-
mentally upon the availability of four separate fault-isolation regions. If processors are used for the
rebroadcasting, then a minimum of four processors must be used. Consequently, a triplex system cannot
be Byzantine resilient without the addition of special additional hardware. The model illustrated in fig-
ure 36  represents the effect of a Byzantine fault on a triplex system with one spare that does not contain
extra hardware.

This model is the same as the traditional triplex model except that it contains two extra transitions—
from state (2) to state (5) and from state (5) to state (8). These transitions represent the situations where
a Byzantine fault has confused the operating system into reconfiguring the wrong processor. In the first
case, a good processor, not the faulty one, has been replaced by the spare.  In the second case, the sys-
tem incorrectly diagnoses the faulty processor and degrades to a faulty simplex. The competing transi-
tions at state (2) would be

2,3 = 2*LAMBDA;

2,4 = <MU_F,STD_F,1-P_W>;

2,5 = <MU_W,STD_W,P_W>;

whereP_W is the probability that the system incorrectly removes a good processor. The competing tran-
sitions at state (5)

Figure 36.  Simple triplex system with one spare subject to Byzantine faults.
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5,6 = 2*LAMBDA;
5,7 = <MU_F,STD_F,1-P_W>;
5,8 = <MU_W,STD_W,P_W>;

The parameterP_W is the most critical parameter in this model. This can be seen in figure 37, which
shows a plot of the results of executing SURE on the full model:

LAMBDA = 1E-4;
MU_F = 1E-4; STD_F = 1E-4;
MU_W = 1E-4; STD_W = 1E-4;
P_W = 0 TO 1 BY 0.1;
1,2 = 3*LAMBDA;
2,3 = 2*LAMBDA;
2,4 = <MU_F,STD_F,1-P_W>;
2,5 = <MU_W,STD_W,P_W>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MU_F,STD_F,1-P_W>;
5,8 = <MU_W,STD_W,P_W>;
7,8 = LAMBDA;
TIME = 10;

Unfortunately, very little experimental data are available to aid in the estimation ofP_W. For this
reason, many conservative system designers have elected to add the additional hardware and software to
make the architecture Byzantine resilient, and thus, eliminate this failure mode from the system.
However, the failure of any additional hardware must be modeled. Alternatively, the system can be
designed in a manner that enables the calculation of the fractionP_W (ref. 22).

Figure 37.  Failure probability as function ofP_W.
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10. Systems With Multiple Independent Subsystems

In this section, techniques for modeling systems that contain multiple independent subsystems are
discussed.  For the subsystems to be independent, it is necessary that no failure dependencies between
the subsystems exist. Mathematically, two eventsA andB are independent if

This definition leads to the following:

Property:  if A andB are independent, then

If two subsystems are located in separate chassis, powered by separate power supplies, electrically
isolated from each other, and sufficiently shielded from the environment, it is not unreasonable to
assume failure independence.

10.1. System With Two Independent Triad-to-Simplex Subsystems

Consider a system with two triplexes, each of which degrades to a simplex. The system requires
both subsystems to be operating for the system to work. Although each processor within a subsystem is
identical, the processors in one subsystem can be given a different failure rate from the processors in the
other subsystem. Letλ1 represent the failure rate of the processors in subsystem 1, andλ2 the failure rate
of the processors in subsystem 2. This system is illustrated in figure 38. In this figure, each  state has
been labeled with four numbers representing four attributes of the system (NW1, NF1, NW2, andNF2):

1. NW1 is the number of working processors in subsystem 1.

2. NF1 is the number of faulty processors in subsystem 1.

3. NW2 is the number of working processors in subsystem 2.

4. NF2 is the number of faulty processors in subsystem 2.

The system starts in state (3030). This notation means that each subsystem has three working
processors and no faulty processors. If a processor in subsystem 1 fails, the system transitions to
state (2130). If a processor in subsystem 2 fails, the system transitions to state (3021). While in
state (2130), the system is trying to reconfigure. If it reconfigures before a second processor in sub-
system 1 fails, the system transitions to state (1030). That is, the first subsystem is a simplex and the
second subsystem is still a triplex. If a second processor in subsystem 1 fails before it reconfigures, then
the system fails in death state (1230). Note that two simultaneous faults have occured in subsystem 1 in
this situation. If a second processor in the other subsystem fails before reconfiguration is completed,
then the system goes to state (2121). In state (2121) both triads have a single faulty processor. Because
the triads are independent, this state does not represent system failure. From this state, four possible
events can happen next

1. A second processor in subsystem 1 fails, which causes system failure.

2. A second processor in subsystem 2 fails, which causes system failure.

3. Subsystem 1 reconfigures by degrading to a simplex.

4. Subsystem 2 reconfigures by degrading to a simplex.

Prob A andB[ ] Prob A[ ] Prob B[ ]=

Prob A B[ ] Prob A andB[ ]
Prob B[ ]

-------------------------------------- Prob A[ ]= =
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The two reconfiguration transitions go to states (1021) and (2110), respectively. Note that in
state (2121) two competing recoveries occur. Because the subsystems are independent, this situation is
modeled  with two competing transitions.

10.2. ASSIST Model for N Independent Triads

As the number of subsystems is increased, the size of the model can increase rapidly.  It very
quickly becomes impractical to produce graphical pictures. Fortunately, the ASSIST language can
define these models economically.  Array state-space variables will be used to model the multiple triads.
The syntax for specifying an array state-space variable is

ident:ARRAY[ const .. const] OFconst .. const

The range specified within the single square brackets denotes the array range, that is, the range of
values over which an array index can vary. The optional range specified after theOF denotes the range
of values that the array state-space variable can hold. Individual array state-space variable elements are
referenced in other ASSIST statements by specifying the index in square brackets, for exampleNP[3]
denotes the third element of arrayNP. When using array state-space variables, the repetition feature in

Figure 38.  Model of system consisting of two triad to simplex subsystems.

3λ1
3030 2130

2λ1
1230

3λ2 3λ2

3λ1
3021 2121

2λ1
1221

2λ2 2λ2

3012 2112

3λ1
3010 2110

2λ1
1210

λ2 λ2

3001 2101

1030
λ1

0130

3λ2

1021
λ1

0121

2λ2

1012

1010
λ1

1011

λ2

1110

δ1

δ2δ2

δ1

δ2

δ1



53

the START statement is convenient to use. Repetition allows the user to specify a sequence such as
3,3,3,3,3  by a shorthand notation,5 of 3 .

The following model describes a system ofN independent triads:

INPUT N_TRIADS;        (* Number of triads initially *)
LAMBDA = 1E-4;         (* Failure rate of active processors *)
DELTA = 3.6E3;         (* Reconfiguration rate *)

SPACE = (NP: ARRAY[1..N_TRIADS] OF 0..3, (* Num. active processors in triad *)
         NFP: ARRAY[1..N_TRIADS] Of 0..3); (* Num. failed active procs *)

START = (N_TRIADS OF 3, N_TRIADS OF 0);

FOR J = 1, N_TRIADS;
   IF NP[J] > NFP[J] TRANTO NFP[J] = NFP[J]+1
        BY (NP[J]-NFP[J])*LAMBDA; (* Active processor failure *)

   IF NFP[J] > 0 TRANTO
        NP[J]=1, NFP[J]=0 BY FAST DELTA;

   DEATHIF 2 * NFP[J] >= NP[J];
     (* Two faults in an active triad or simplex with a fault *)
ENDFOR;

The user is prompted during ASSIST execution for the number of independent triads to be modeled
by N_TRIADS.  Two array state-space variables are used:

1. NP[J]  is the array containing number of active processors in each subsystemJ .

2. NFP[J]  is the array containing number of faulty processors in each triadJ .

Because reconfiguration collapses a triad to a simplex, the value of eachNP[J]  must always be
either 3 or 1. Processor failure in triadJ  results in the increment ofNFP[J] . Note that theDEATHIF
condition covers both the triplex and the simplex situation.

10.3. The Additive Law of Probability

As shown in section 10.2, larger systems can be constructed by combining several independent sub-
systems. If the probability of failure of a single subsystem isP(Ei), then the probability of failure of a
system consisting of two of these subsystems that fails when either subsystem fails is

Psys = P(E1 or E2) = P(E1) + P(E2) − P(E1)P(E2)

This formula follows from the independence of the subsystems and the additive law of probability
and can be used to greatly simplify the analysis of many systems. The formula can be illustrated with
the models presented in section 10.2. ASSIST was used to generate a model of a system consisting of
two independent triads. This system could be solved by submitting the model to a Markov solver:

air58% paws

 PAWS V7.9.3   NASA Langley Research Center

 1? read twotriads

 2: N_TRIADS = 2;
 3: LAMBDA = 1E-4;
 4: DELTA = 3.6E3;
 5:
 6:
 7:      2(* 3,3,0,0 *),     3(* 3,3,1,0 *)       = (3-0)*LAMBDA;
 8:      2(* 3,3,0,0 *),     4(* 3,3,0,1 *)       = (3-0)*LAMBDA;
 9:      3(* 3,3,1,0 *),     5(* 1,3,0,0 *)       = FAST DELTA;
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10:      3(* 3,3,1,0 *),     1(* 3,3,2,0 DEATH *) = (3-1)*LAMBDA;
11:      3(* 3,3,1,0 *),     6(* 3,3,1,1 *)       = (3-0)*LAMBDA;
12:      4(* 3,3,0,1 *),     7(* 3,1,0,0 *)       = FAST DELTA;
13:      4(* 3,3,0,1 *),     6(* 3,3,1,1 *)       = (3-0)*LAMBDA;
14:      4(* 3,3,0,1 *),     1(* 3,3,0,2 DEATH *) = (3-1)*LAMBDA;
15:      5(* 1,3,0,0 *),     1(* 1,3,1,0 DEATH *) = (1-0)*LAMBDA;
16:      5(* 1,3,0,0 *),     8(* 1,3,0,1 *)       = (3-0)*LAMBDA;
17:      6(* 3,3,1,1 *),     8(* 1,3,0,1 *)       = FAST DELTA;
18:      6(* 3,3,1,1 *),     9(* 3,1,1,0 *)       = FAST DELTA;
19:      6(* 3,3,1,1 *),     1(* 3,3,2,1 DEATH *) = (3-1)*LAMBDA;
20:      6(* 3,3,1,1 *),     1(* 3,3,1,2 DEATH *) = (3-1)*LAMBDA;
21:      7(* 3,1,0,0 *),     9(* 3,1,1,0 *)       = (3-0)*LAMBDA;
22:      7(* 3,1,0,0 *),     1(* 3,1,0,1 DEATH *) = (1-0)*LAMBDA;
23:      8(* 1,3,0,1 *),    10(* 1,1,0,0 *)       = FAST DELTA;
24:      8(* 1,3,0,1 *),     1(* 1,3,1,1 DEATH *) = (1-0)*LAMBDA;
25:      8(* 1,3,0,1 *),     1(* 1,3,0,2 DEATH *) = (3-1)*LAMBDA;
26:      9(* 3,1,1,0 *),    10(* 1,1,0,0 *)       = FAST DELTA;
27:      9(* 3,1,1,0 *),     1(* 3,1,2,0 DEATH *) = (3-1)*LAMBDA;
28:      9(* 3,1,1,0 *),     1(* 3,1,1,1 DEATH *) = (1-0)*LAMBDA;
29:     10(* 1,1,0,0 *),     1(* 1,1,1,0 DEATH *) = (1-0)*LAMBDA;
30:     10(* 1,1,0,0 *),     1(* 1,1,0,1 DEATH *) = (1-0)*LAMBDA;
31:
32: (* NUMBER OF STATES IN MODEL = 10 *)
33: (* NUMBER OF TRANSITIONS IN MODEL = 24 *)
34: (* 12 DEATH STATES AGGREGATED INTO STATE 1 *)

      0.07 SECS. TO READ MODEL FILE
35? run

MODEL FILE = twotriads.mod               PAWS V7.9.3 7 Feb 92 14:43:49

                  PROBABILITY        ACCURACY     ----- RUN #1
-----------   -------------------   --------
              2.9961673328249e-06   7 DIGITS

0.050 SECS. CPU TIME UTILIZED

36? exit

Another way to solve this system is to apply the additive law of probability. First solve a single triad
subsystem:

air58% paws
  PAWS V7.9.3 NASA Langley Research Center

  1? read onetriad

  2: N_TRIADS = 1;
  3: LAMBDA = 1E-4;
  4: DELTA = 3.6E3;
  5:
  6:
  7:      2(* 3,0 *),      3(* 3,1 *)       = (3-0)*LAMBDA;
  8:      3(* 3,1 *),      4(* 1,0 *)       = FAST DELTA;
  9:      3(* 3,1 *),      1(* 3,2 DEATH *) = (3-1)*LAMBDA;
 10:      4(* 1,0 *),      1(* 1,1 DEATH *) = (1-0)*LAMBDA;
 11:
 12: (* NUMBER OF STATES IN MODEL = 4 *)
 13: (* NUMBER OF TRANSITIONS IN MODEL = 4 *)
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14: (* 2 DEATH STATES AGGREGATED INTO STATE 1 *)

       0.00 SECS. TO READ MODEL FILE
 15? run

MODEL FILE = onetriad.mod                 PAWS V7.9.3 7 Feb 92 14:44:01

                 PROBABILITY       ACCURACY       ----- RUN #1
-----------   -------------------  --------
              1.4980847885419e-06  9 DIGITS

 0.017 SECS. CPU TIME UTILIZED

Then, apply the additive law of probability:

Notice that the same answer is obtained as in the N-triad model. This calculation is automated in the
ORPROB command found in SURE, PAWS, and STEM as illustrated below:

air58% paws

  PAWS V7.9.3   NASA Langley Research Center

  1? read0 onetriad

 15? run

                   PROBABILITY        ACCURACY     ----- RUN #1

 -----------   -------------------   --------
               1.4980847885419e-06   9 DIGITS

 16? read0 onetriad
 30? run

                   PROBABILITY        ACCURACY     ----- RUN #2
 -----------   -------------------   --------
               1.4980847885419e-06   9 DIGITS

 31? orprob

    RUN #    PROBABILITY
 ---------- -----------
      1     1.49808e-06
      2     1.49808e-06
 ---------- -----------
 OR PROB = 2.99617e-06

 The SURE commandread0  prevents the echoing of the file as it is read in. It is equivalent to
ECHO = 0; READ onetriad . Theorprob  command at line 31 first reports the results of the pre-
vious runs, then gives the result of applying the additive law of probability to independent events.

11. Model Pruning

 A model of a system with a large number of components tends to have many long paths that consist
of one or two failures of each component before a condition of system failure is reached. Because the
occurrence of so many failures is unlikely during a short mission, these long paths typically contribute
insignificant amounts to the probability of system failure. The dominant failure modes of the system are
typically the short paths to system failure that consist of failures of critically coupled components. The

Psys P E1 or E2( ) P E1( ) P E2( ) P E1( ) P E2( )–+= =
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model can be pruned to eliminate the long paths by conservatively assuming that system failure occurs
earlier on these paths. Model pruning is supported in ASSIST by thePRUNEIF statement. The
PRUNEIF statement has the same syntax as theDEATHIF statements:

PRUNEIFcondition;

where condition is a Boolean expression describing the states to be pruned.  The following syntax:

PRUNIFcondition;

is also acceptable. The pruned states generated are grouped by thePRUNEIF statement they satisfy, just
as the death states are. In a model generated from an input file with threeDEATHIF statements and two
PRUNEIF statements, states (1) through (3) will be death states corresponding to the threeDEATHIF
statements and states (4) and (5) will be pruned states corresponding to the twoPRUNEIF statements.
ASSIST generates a statement in the model file that identifies the pruned states in the model. For exam-
ple, the model with four death states and two pruned states would contain the statement

PRUNESTATES = (5,6);

which will be used by SURE to separately list the prune state probabilities from the death state probabil-
ities. Versions of SURE earlier than 6.0 will simply list the pruned states as death states. The SURE pro-
gram reports the ASSIST pruned states separately from the death states as follows:

DEATHSTATE    LOWERBOUND    UPPERBOUND   COMMENTS                RUN #4

----------   -----------   -----------   ---------------------------------

     1       9.99500e-12   1.00000e-11

     2       1.66542e-10   1.66667e-10

     3       9.99500e-14   1.00000e-13

sure prune   0.00000e+00   1.22666e-14

             -----------   -----------

  SUBTOTAL   1.76637e-10   1.76779e-10

PRUNESTATE    LOWERBOUND    UPPERBOUND

----------   -----------   -----------

prune   5    9.99500e-15   1.00000e-14

prune   6    9.99500e-18   1.00000e-17

             -----------   -----------

  SUBTOTAL   1.00050e-14   1.00100e-14

TOTAL        1.76637E-10   1.76789e-10

In the TOTAL line, the upper bound includes the contribution of the pruned states, whereas the
lower bound does not. Thus, theTOTAL lines are valid bounds on the system failure probability. If the
prune state upper bound is significant with respect to theTOTAL upper bound, then the  model has prob-
ably been pruned too severely. The upper and lower bounds can be made significantly closer by relaxing
the amount of pruning. The ASSIST program wrote the following into the SURE input file to inform the
SURE program which states are ASSIST-level pruned states:

PRUNESTATES = (5,6);

Two types of pruning are supported by SURE and ASSIST. One is SURE-level pruning, which was
described in section 5.3.6, and the other is ASSIST-level pruning, which is described in this section.
ASSIST-level pruning is done at model generation time. After model building is completed, the amount
of processing time can be reduced by using SURE-level pruning. This is invoked by the SURE com-
mandPRUNE = <rate> . SURE-level pruning will still be effective in conjunction with ASSIST-
level pruning. ASSIST pruning will be demonstrated for many systems in subsequent sections.
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12. Multiple Subsystems With Failure Dependencies

Flight control systems are composed of many different components, including processors. Previous
sections have only considered processors. In this section, how to include the fault behavior of all com-
ponents in a typical flight control system architecture in the reliability model will be discussed.

12.1. Simple Flight Control System

The system shown in figure 39 consists of five subsystems:

1. Triplicated sensors

2. Triplicated  bus from sensor to processorSP_BUS

3. Degradable quadraplex of processors

4. Triplicated  bus from processor to actuatorPA_BUS

5. Force-sum voting actuator

All sensor values are sent to all processors over theSP_BUS. The system fails when two sensors
have failed. No dependencies exist between the sensors and the processors. Thus, as long as the fault-
tolerantSP_BUS is working, each sensor value can reach all processors. Of course, the system fails if
two channels of theSP_BUS fail. The processors form a degradable quadraplex. Outputs of the proces-
sors are sent over all channels of the triplicatedPA_BUS. This transmission is accomplished by time
multiplexing the bus. As long as at least twoPA_BUS channels are working, all working-processor out-
puts reach the force-sum actuation system. Thus, no dependencies exist between the processors, the
force-sum actuator, and thePA_BUS. For simplicity, the force-sum actuation system will be treated as a
black box. Force-sum actuation systems are complex mechanical and electronic systems that utilize
multiple actuators, and sometimes, internal fault-tolerant electronics, and thus, would require a sophisti-
cated model to properly analyze.  The force-sum actuator will be assumed to ignore the outputs of all
processors that have been removed from the quadraplex. Thus, the force-sum actuator performs a
mechanical vote on all outputs from processors that are currently in the configuration. The failure rate of
the force-sum actuator is 10−8/hr.

Figure 39.  System with five subsystems.
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Because no failure dependencies exist, the separate subsystems can be represented by separate reli-
ability models. Each model is solved in isolation. Finally, the results are added together probabilisti-
cally, that is, the probability of the union as described in section 10.3. The SURE commandORPROB
performs the probabilistic addition automatically. The SURE input file is

LAMBDA_SENSORS = 3.8E-6;
1,2 = 3*LAMBDA_SENSORS;
2,3 = 2*LAMBDA_SENSORS;
RUN;

LAMBDA_SP_BUS = 3.8E-6;
1,2 = 3*LAMBDA_SP_BUS;
2,3 = 2*LAMBDA_SP_BUS;
RUN;

LAMBDA_PA_BUS = 3.8E-6;
1,2 = 3*LAMBDA_PA_BUS;
2,3 = 2*LAMBDA_PA_BUS;
RUN;

LAMBDA_ACT = 1E-8;
1,2 = LAMBDA_ACT;
RUN;

LAMBDA = 1E-4;                  (* Failure rate of processor *)
MEANREC = 1E-5;                 (* Mean reconfiguration time *)
STDREC = 1E-5;                  (* Standard deviation of “ “ *)

1,2 = 4*LAMBDA;
2,3 = 3*LAMBDA;
2,4 = <MEANREC,STDREC>;
4,5 = 3*LAMBDA;
5,6 = 2*LAMBDA;
5,7 = <MEANREC,STDREC>;
7,8 = LAMBDA;
RUN;

ORPROB;

The interactive session uses a single input file with three models, threeRUN statements, and an
ORPROB command:

$ sure

  SURE V7.4    NASA Langley Research Center

  1? read sa

  2: LAMBDA_SENSORS = 3.8E-6;
  3: 1,2 = 3*LAMBDA_SENSORS;
  4: 2,3 = 2*LAMBDA_SENSORS;
  5: RUN;

MODEL FILE = sa.mod                      SURE V7.4 24 Jan 90   10:28:46

               LOWERBOUND   UPPERBOUND    COMMENTS               RUN #1
 -----------   -----------   -----------    ---------------------------------
              4.33173e-09  4.33200e-09

1 PATH(S) TO DEATH STATES
0.034 SECS. CPU TIME UTILIZED
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 6:
 7: LAMBDA_SP_BUS = 3.8E-6;
 8: 1,2 = 3*LAMBDA_SP_BUS;
 9: 2,3 = 2*LAMBDA_SP_BUS;
10: RUN;

MODEL FILE = sa.mod                      SURE V7.4 24 Jan 90   10:28:46

               LOWERBOUND    UPPERBOUND   COMMENTS                 RUN #2
 -----------   -----------   -----------    ---------------------------------
              4.33173e-09   4.33200e-09

1 PATH(S) TO DEATH STATES
0.034 SECS. CPU TIME UTILIZED
11:
12: LAMBDA_PA_BUS = 3.8E-6;
13: 1,2 = 3*LAMBDA_PA_BUS;
14: 2,3 = 2*LAMBDA_PA_BUS;
15: RUN;

MODEL FILE = sa.mod                      SURE V7.4 24 Jan 90   10:28:47

               LOWERBOUND    UPPERBOUND   COMMENTS                 RUN #3
 -----------   -----------   -----------    ---------------------------------
              4.33173e-09   4.33200e-09

1 PATH(S) TO DEATH STATES
0.050 SECS. CPU TIME UTILIZED
16:
17: LAMBDA_ACT = 1E8;
18: 1,2 = LAMBDA_ACT;
19: RUN

MODEL FILE = sa.mod               SURE V7.4 24 Jan 90   10:28:47

               LOWERBOUND    UPPERBOUND    COMMENTS               RUN #4
 -----------   -----------    -----------    --------------------------------
              1.00000e-07    1.00000e-07

1 PATH(S) TO DEATH STATES
0.050 SECS. CPU TIME UTILIZED
20:
21: LAMBDA = 1E-4;                    (* Failure rate of processor *)
22: MEANREC = 1E-5;                   (* Mean reconfiguration time *)
23: STDREC =  1E-5;                   (* Standard deviation of " " *)
24:
25: 1,2 = 4*LAMBDA;
26: 2,3 = 3*LAMBDA;
27: 2,4 = <MEANREC,STDREC>;
28: 4,5 = 3*LAMBDA;
29: 5,6 = 2*LAMBDA;
30: 5,7 = <MEANREC,STDREC>;
31: 7,8 = LAMBDA;
32: RUN;

MODEL FILE = sa.mod                       SURE V7.4 24 Jan 90   10:28:47
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               LOWERBOUND    UPPERBOUND    COMMENTS               RUN #5

 -----------   -----------   -----------    --------------------------------

               2.00574e-09  2.01201e-09

3 PATH(S) TO DEATH STATES

0.134 SECS. CPU TIME UTILIZED

33:

34: ORPROB;

 MODEL FILE = sa.mod                      SURE V7.4 24 Jan 90   10:28:48

   RUN #      LOWERBOUND    UPPERBOUND

----------   -----------   -----------

     1       4.33173e-09   4.33200e-09

     2       4.33173e-09   4.33200e-09

     3       4.33173e-09   4.33200e-09

     4       1.00000e-07   1.00000e-07

     5       2.00574e-09   2.01201e-09

----------   -----------   -----------

 OR PROB =   1.15001e-07   1.15008e-07

        0.70 SECS. TO READ MODEL FILE

35? exit

The sensor subsystem for this example was very simple to model. Section 12.2 shows a more com-
plex sensor subsystem.

12.2. Flight Control System With Failure Dependency

The flight control system modeled in this section contains components that are dependent upon each
other.   The system consists of four sensors (s1, s2, s3, and s4), four computers (c1, c2, c3, and c4) and a
quadraplexPA_BUS.  The system is illustrated in figure 40.

Figure 40.  Flight control system with dependent components.
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Each sensor is connected to only one processor; therefore, the failure of a processor makes the
attached sensor useless.  However, the reverse is not true because the processors are cross-strapped and
exchange sensor values.

Because the sensors and the computers are dependent, they can no longer be analyzed with separate
models. Furthermore, counting the number of sensor and computer failures is no longer sufficient.  The
specific sensor or computer that has failed must be recorded in the state information. Consider the two
sequences of failures:

1. Sensor 1 fails, then processor 1 fails.

2. Sensor 1 fails, then processor 2 fails.

Note that in both cases one sensor and one processor fail.  However, the second sequence of failures is
more serious, because it results in the loss of two sensors.

LS    = 6.5E-5;   (* Failure rate of sensors *)
LC    = 3.5E-4;   (* Failure rate of computers *)
DELTA = 1E4;      (* Rate of removing faulty computer from configuration *)
ONEDEATH OFF;
SPACE = (WS : ARRAY[1..4] OF 0..1,  (* Status of the 3 sensors *)
          AC : ARRAY[1..4] OF 0..1,   (* Computers in configuration *)
         WC : ARRAY[1..4] OF 0..1  (* Working computers in configuration *)
        );
START = (4 OF 1, 4 OF 1, 4 OF 1);
FOR I = 1,4
   IF WS[I] = 1 TRANTO WS[I] = 0            BY LS; (* Sensor   fails *)
   IF WC[I] = 1 TRANTO WC[I] = 0, WS[I] = 0 BY LC; (* Computer fails *)
   IF AC[I] = 1 AND WC[I] = 0 TRANTO AC[I] = 0 BY DELTA;
ENDFOR;
DEATHIF WS[1] + WS[2] + WS[3] + WS[4] = 0;
DEATHIF AC[1] + AC[2] + AC[3] + AC[4] >= 2 * (WC[1] + WC[2] + WC[3] + WC[4]);

The first three statements define the failure rates of the sensors, the failure rates of the computers,
and the recovery rate of the computers. TheONEDEATH OFF statement turns off aggregation of the
death states. By default, ASSIST collapses all death states into one state. This command causes ASSIST
to give each death state a unique state number. TheFOR loop effectively creates 12TRANTO rules.
These rules create failure transitions corresponding to failures of the eight individual components and
recovery transitions corresponding to the removal of faulty processors. The twoDEATHIF statements
define two failure conditions:

1. No sensors are left.

2. A majority of the processors  are no longer working.

The ASSIST output is

ASSIST VERSION 7.1                         NASA Langley Research Center
PARSING TIME = 0.23 sec.
generating SURE model file...
 100 transitions processed.
 200 transitions processed.
 300 transitions processed.
 400 transitions processed.
 500 transitions processed.
 00 transitions processed.
RULE GENERATION TIME = 1.09 sec.
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NUMBER OF STATES IN MODEL = 397
NUMBER OF TRANSITIONS IN MODEL = 600

 The transcript of the SURE run follows:

% sure

  SURE V7.9.8   NASA Langley Research Center

  1? read0 fcs-dep

       0.60 SECS. TO READ MODEL FILE
1810? run

 MODEL FILE = fcs-dep.mod               SURE V7.9.8 27 Jun 94  08:56:16

             LOWERBOUND  UPPERBOUND   COMMENTS           RUN #1
-----------   -----------   -----------    ---------------------------
             1.71645e-07  1.71645e-07  <prune 1.3e-14> <ExpMat>

6171 PATH(S) TO DEATH STATES 666 PATH(S) PRUNED
HIGHEST PRUNE LEVEL =  1.59354e-15
Q(T) ACCURACY >= 9 DIGITS
30.500 SECS. CPU TIME UTILIZED

% sure

  SURE V7.9.8   NASA Langley Research Center

  1? read0 fcs-dep

       0.60 SECS. TO READ MODEL FILE
1810? run

 MODEL FILE = fcs-dep.mod               SURE V7.9.8 27 Jun 94  09:25:56

              LOWERBOUND  UPPERBOUND  COMMENTS          RUN #1
 -----------    -----------   -----------    -------------------------
              1.71645e-07  1.71645e-0   <prune 1.3e-14> <ExpMat>

6171 PATH(S) TO DEATH STATES 666 PATH(S) PRUNED
HIGHEST PRUNE LEVEL =  1.59354e-15
Q(T) ACCURACY >= 9 DIGITS
29.883 SECS. CPU TIME UTILIZED

The SURE program found 6171 paths in the model that lead to a death state.  The SURE pruning
facility pruned 666 paths that contributed a total of 1.3× 10−14 to the upper bound. Because this number
is small when compared with the final value of 1.7× 10−7, the pruning is not too severe. The SURE exe-
cution time was 29.9 sec. Although, the default pruning level was used in this case, the user can specify
a probability level for model pruning, for example 10−15. Each time the probability of encountering a
state in the model falls below the specified value, that path is pruned. The SURE program sums the
probabilities of all pruned paths and reports that value to the user as the estimated error due to pruning.
SURE always adds the pruned value to the upper bound.

This run did not account for the failure of thePA_BUS or the actuator. Because these components
are not dependent upon the sensors or the computers, they can be analyzed by separate models:

1811? read fcs-other

1812: LAMBDA_PA_BUS = 3.8E-6;
1813: 1,2 = 3*LAMBDA_PA_BUS;
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1814: 2,3 = 2*LAMBDA_PA_BUS;
1815: RUN;
 MODEL FILE = fcs-other.mod          SURE V7.9.8 27 Jun 94  09:28:29

               LOWERBOUND    UPPERBOUND    COMMENTS            RUN #2
-----------   -----------   -----------   ---------------------------
              4.33173e-09   4.33200e-09
 1 PATH(S) TO DEATH STATES
 0.000 SECS. CPU TIME UTILIZED
1816:
1817: LAMBDA_ACT = 1E-8;
1818: 1,2 = LAMBDA_ACT;
1819: RUN;

 MODEL FILE = fcs-other.mod             SURE V7.9.8 27 Jun 94  09:28:29

              LOWERBOUND   UPPERBOUND  COMMENTS            RUN #3
-----------    -----------   -----------    --------------------------
              1.00000e-0  1.00000e-07

 1 PATH(S) TO DEATH STATES
 0.016 SECS. CPU TIME UTILIZED

       0.03 SECS. TO READ MODEL FILE
1820? ORPROB

 MODEL FILE = fcs-other.mod             SURE V7.9.8 27 Jun 94  09:28:44

    RUN #      LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
     1        1.71645e-07   1.71645e-07
     2        4.33173e-09   4.33200e-09
     3        1.00000e-07   1.00000e-07
 ----------   -----------   -----------
  OR PROB =   2.75976e-07   2.75976e-07

1821?

The finalORPROB command calculates the final system reliability from the three separate SURE runs.

Suppose a newX component is added to the architecture.  This component is dependent upon the
computer to which it is attached in the same way that the sensors are.  The new ASSIST model is

LS = 6.5E-5;   (* Failure rate of sensors *)
LC = 3.5E-4;   (* Failure rate of computers *)
LX = 5.0E-5;   (* Failure rate of X component *)
DELTA = 1E4;   (* Rate of removing faulty computer from configuration *)

ONEDEATH OFF;

SPACE = (WS : ARRAY[1..4] OF 0..1,  (* Status of the 3 sensors *)
          AC : ARRAY[1..4] OF 0..1,  (* Computers in configuration *)
          WC : ARRAY[1..4] OF 0..1,  (* Working computers in configuration *)
         WX : ARRAY[1..4] OF 0..1  (* Status of the 4 X-components *)
        );

START = (4 OF 1, 4 OF 1, 4 OF 1, 4 OF 1);

FOR I = 1,4
   IF WS[I] = 1 TRANTO WS[I] = 0                       BY LS;
   IF WC[I] = 1 TRANTO WC[I] = 0, WS[I] = 0, WX[I] = 0 BY LC;
   IF AC[I] = 1 AND WC[I] = 0 TRANTO AC[I] = 0         BY FAST DELTA;
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   IF WX[I] = 1 TRANTO WX[I] = 0,                      BY LX;
ENDFOR;

DEATHIF WS[1] + WS[2] + WS[3] + WS[4] = 0;
DEATHIF WX[1] + WX[2] + WX[3] + WX[4] = 0;
DEATHIF AC[1] + AC[2] + AC[3] + AC[4] >= 2 * (WC[1] + WC[2] + WC[3] + WC[4]);

Notice that the secondTRANTO statement in theFOR loop has been modified to include the depen-
dency of theX component on the computer to which it is connected.  The ASSIST generation transcript
follows:

% assist frcs-dep
ASSIST VERSION 7.1                          NASA Langley Research Center
PARSING TIME = 0.22 sec.
generating SURE model file...
 100 transitions processed.
 200 transitions processed.
 300 transitions processed.
 400 transitions processed.
 500 transitions processed.
 600 transitions processed.
 700 transitions processed.
 800 transitions processed.
 900 transitions processed.
1000 transitions processed.
2000 transitions processed.
3000 transitions processed.
4000 transitions processed.
5000 transitions processed.
6000 transitions processed.
7000 transitions processed.
8000 transitions processed.
9000 transitions processed.
10000 transitions processed.
RULE GENERATION TIME = 28.12 sec.
NUMBER OF STATES IN MODEL = 8387
NUMBER OF TRANSITIONS IN MODEL = 14328

The addition of the fourX components to the system has increased the number of states from 397 to
8387, a significant increase.  The system is allowed to aggregate the death states. The ASSIST program
is rerun with the death state aggregation and the following is obtained:

% assist fcs-dep
ASSIST VERSION 7.1                          NASA Langley Research Center
PARSING TIME = 0.21 sec.
generating SURE model file...
 100 transitions processed.
  .
  .
10000 transitions processed.
RULE GENERATION TIME = 27.60 sec.
NUMBER OF STATES IN MODEL = 2214
NUMBER OF TRANSITIONS IN MODEL = 14328
6176 DEATH STATES AGGREGATED INTO STATES 1 - 3
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Death state aggregation has significantly reduced the number of states, but  a large number of tran-
sitions remain in the model.  This large number of transitions is one of the major difficulties encoun-
tered when modeling real systems. The number of states and transitions in the model grows
exponentially with the number of components.  The reason that the models become large is that many
combinations of components in the system can fail before system failure occurs.  In this model,  combi-
nations of up to four or more failures that involve different  components can occur before a condition of
system failure is reached.  Because the occurrence of so many failures is unlikely during a short mis-
sion, these long paths typically contribute insignificant amounts to the probability of system failure.
The dominant failure modes of the system are typically the short paths to system failure that consist of
failures of only two or three components. Although the long paths contribute insignificantly to the prob-
ability of system failure, the majority of the execution time needed to generate and solve this model is
spent handling long paths.

Fortunately, model pruning can be used to eliminate the long paths to system failure by conserva-
tively assuming that system failure occurs earlier on these paths. However, a more effective strategy is
to prune long paths in ASSIST to prevent the generation of all  these paths. Although SURE will prune
them, a large amount of time can be consumed by SURE in reading the generated file.

Pruning in the ASSIST program can reduce the model generation time and memory requirements,
as well as the solution time.  However, because pruning in ASSIST must be based on state-space vari-
able values rather than probability calculations, it must be done more crudely. The ASSIST user typi-
cally specifies pruning at a certain level of component failures in the system.  For example, if the user
knows or suspects that the dominant failures occur after only three or four component failures, then
ASSIST can be commanded to prune the model at the fourth component failure.  This pruning is usually
done by introducing a new state space,NF, that counts the total number of component failures in the
system.  This state-space variable must be incremented in everyTRANTO statement that defines a com-
ponent failure.  The input file for flight control system with theX component modified to perform prun-
ing at the fourth component failure level is

LS = 6.5E-5;   (* Failure rate of sensors *)
LC = 3.5E-4;   (* Failure rate of computers *)
LX = 5.0E-5;   (* Failure rate of X component *)
DELTA = 1E4;   (* Rate of removing faulty computer from configuration *)

ONEDEATH OFF;

SPACE = (WS : ARRAY[1..4] OF 0..1,  (* Status of the 3 sensors *)
          AC : ARRAY[1..4] OF 0..1,  (* Computers in configuration *)
          WC : ARRAY[1..4] OF 0..1,  (* Working computers in configuration *)
            WX : ARRAY[1..4] OF 0..1,   (* Status of the 4 X-components *)
         NF : 0..16
        );

START = (4 OF 1, 4 OF 1, 4 OF 1, 4 OF 1, 0);

FOR I = 1,4
   IF WS[I] = 1 TRANTO WS[I] = 0, NF = NF + 1    BY LS;
   IF WC[I] = 1 TRANTO WC[I] = 0, WS[I] = 0, WX[I] = 0 NF = NF + 1 BY LC;
   IF AC[I] = 1 AND WC[I] = 0 TRANTO AC[I] = 0   BY FAST DELTA;
   IF WX[I] = 1 TRANTO WX[I] = 0, NF = NF + 1    BY LX;
ENDFOR;

DEATHIF WS[1] + WS[2] + WS[3] + WS[4] = 0;
DEATHIF WX[1] + WX[2] + WX[3] + WX[4] = 0;
DEATHIF AC[1] + AC[2] + AC[3] + AC[4] >= 2 * (WC[1] + WC[2] + WC[3] + WC[4]);

PRUNEIF NF >= 4;
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Notice that all failureTRANTO statements now increment theNF variable.  ThePRUNEIF state-
ment informs ASSIST to prune all states whereNF >= 4 . The ASSIST transcript follows:

% assist fcs-dep-prune
ASSIST VERSION 7.1                          NASA Langley Research Center
PARSING TIME = 0.26 sec.
generating SURE model file...
 100 transitions processed.
  .
  .
3000 transitions processed.
RULE GENERATION TIME = 7.45 sec.
NUMBER OF STATES IN MODEL = 445
NUMBER OF TRANSITIONS IN MODEL = 3476
736 DEATH STATES AGGREGATED INTO STATES 1 - 3
1664 PRUNE STATES AGGREGATED INTO STATE 4

Thus, pruning at the fourth component level reduced the model from 2214 states and 14 328 transi-
tions to only 445 states and 3476 transitions. All pruned states are grouped into state (4). If more than
onePRUNEIF statement had existed, the pruned states would have been grouped according to which
PRUNEIF statement  was satisfied.

Whenever the ASSIST input file includes one or morePRUNEIF statements, the program automat-
ically includes a statement in the SURE input file that indicates which states are pruned states generated
by ASSIST.  For this model, the following is generated:

PRUNESTATES = 4;

The output from the SURE run is

% sure

  SURE V7.9.8   NASA Langley Research Center

  1? read0 fcs-dep-prune

    PRUNE STATES ARE: 4

        4.33 SECS. TO READ MODEL FILE
10442? list = 2;
10443? run

 MODEL FILE = fcs-dep-prune.mod        SURE V7.9.8 27 Jun 94  10:19:42

 DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS            RUN #1
 ----------   -----------   -----------    ---------------------------
      1       1.16655e-10   1.18689e-10
      2       8.30445e-11   8.45037e-11
      3       1.70577e-07   1.73274e-07
 sure prune   0.00000e+00   1.55244e-12
              -----------   -----------
   SUBTOTAL   1.70777e-07   1.73478e-07
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 PRUNESTATE    LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
 prune   4    4.22619e-10   4.29605e-10
              -----------   -----------
   SUBTOTAL   4.22619e-10   4.29605e-10

 TOTAL        1.70777e-07   1.73909e-07

  13836 PATH(S) TO DEATH STATES, 243 PATH(S) PRUNED
  HIGHEST PRUNE LEVEL =  5.85986e-12

 1.800 SECS. CPU TIME UTILIZED

The states pruned by ASSIST are reported separately from the death states.  When reporting the
total bounds on probability of system failure (in the line labeled “TOTAL”), the upper bound includes
the contribution of the prune states, whereas the lower bound does not. Thus, theTOTAL line reports
valid bounds on the system failure probability.  If thePRUNESTATE upper bound is significant with
respect to theTOTAL upper bound, then the model has probably been pruned too severely in ASSIST.
For this example, the upper bound on the error due to the pruning done in ASSIST is 4.29605× 10−10.
The SURE program performed some additional pruning which added 1.55× 10−12.  Both numbers are
insignificant in comparison with the total upper bound of 1.7× 10−7.  The user often wants to find
the best level of pruning.  This level can be found by rerunning the model with different levels of
pruning.  The model is rerun with level 3 pruning. That is, thePRUNEIF statement is changed to
PRUNEIF NF >= 3;

The following transcript shows the result of running both SURE and ASSIST:

%assist fcs-dep-prune
ASSIST VERSION 7.1                          NASA Langley Research Center
PARSING TIME = 0.22 sec.
generating SURE model file...
 100 transitions processed.
  .
  .
1000 transitions processed.
RULE GENERATION TIME = 2.41 sec.
NUMBER OF STATES IN MODEL = 123
NUMBER OF TRANSITIONS IN MODEL = 1060
132 DEATH STATES AGGREGATED INTO STATES 1 - 3
724 PRUNE STATES AGGREGATED INTO STATE 4

% sure

  SURE V7.9.8   NASA Langley Research Center

  1? read0 fcs-dep-prune

    PRUNE STATES ARE: 4

       1.33 SECS. TO READ MODEL FILE
3194? run

 MODEL FILE = fcs-dep-prune.mod        SURE V7.9.8 27 Jun 94  10:27:34



68

                LOWERBOUND   UPPERBOUND     COMMENT           RUN #1
----------- ----------- ----------- --------------------------

               1.70286e-07   5.35732e-07    <prune 1.2e-10>

1724 PATH(S) TO DEATH STATES 6 PATH(S) PRUNED
HIGHEST PRUNE LEVEL =  5.54876e-11
ASSIST PRUNE STATE PROBABILITY IS IN [ 3.57338e-07,  3.62633e-07]
0.233 SECS. CPU TIME UTILIZED

A significant reduction in the size of the model was obtained; however, the reported pruning by
ASSIST of 3.6× 10−7 is significant in comparison with the upper bound. Although this amount has been
added to the upper bound, and thus, the bound is indeed an upper bound, it is not close to the lower
bound of 1.7× 10−7. If this level of accuracy is not sufficient, one must return to level 4 pruning.

12.3. Monitored Sensors

In this example, a set of monitored sensors is modeled.  The system consists of five sensors with
five monitors to detect the failure of each sensor.  Sensors fail at rateλS, and monitors fail at rateλM.
The monitors are assumed to fail in a fail-stop manner, that is, a good sensor is not falsely accused. If a
sensor fails and the monitor is working, the monitor will detect with 90-percent probability that the sen-
sor failed and will remove that sensor from the active configuration.  If the monitor has failed or does
not detect that the sensor has failed, then the faulty sensor remains in the active configuration and con-
tributes faulty answers to the voting.  There is no other means of reconfiguration.

Because values from all sensors in the active configuration are voted, system failure occurs when
half or more of the active sensors are faulty.

The ASSIST input file to describe this system is as follows:

LAMBDA_S = 1E-4;    (* Failure rate of sensor *)
LAMBDA_M = 1E-5;    (* Failure rate of monitor *)
COV = .90;          (* Detection coverage of monitor *)

SPACE = (NW: 0..5,      (* Number of working sensors *)
         NW_MON: 0..5,  (* Number of working sensors with monitors *)
         NF: 0..5);     (* Number of failed active sensors *)

START = (5,5,0);   (* Start with 5 working sensors with monitors *)

   (* Failure of monitored sensor *)
IF (NW_MON > 0) THEN
   TRANTO NW=NW-1,NW_MON=NW_MON-1 BY COV*LAMBDA_S;
   TRANTO NW=NW-1,NW_MON=NW_MON-1,NF=NF+1 BY (1-COV)*LAMBDA_S;
ENDIF;

   (* Failure of unmonitored sensor *)
IF (NW > NW_MON) TRANTO NW = NW-1, NF=NF+1 BY (NW-NW_MON)*LAMBDA_S;

   (* Failure of monitor *)
IF NW_MON > 0 TRANTO NW_MON = NW_MON-1 BY LAMBDA_M;

DEATHIF NF >= NW;

The state space consists of three variables:NW, NW_MON, andNF.  The state-space variableNW
represents the number of working sensors in the active configuration and is decremented whenever a
monitor detects that its sensor has failed.  The variableNW_MON represents how many of theNW sensors
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have functioning monitors.  This variable is decremented whenever a monitor fails or a monitored sen-
sor fails.  The variableNF represents the number of failed sensors in the active configuration and is
incremented whenever a sensor fails and its monitor is either faulty or fails to detect that the sensor has
failed.

12.4. Two Triads With Three Power Supplies

This example consists of two triads of computers with one triad of power supplies connected so that
one computer in each triad is connected to each power supply.  Thus, if a power supply fails, then one
computer in each triad fails.  Because of the complex failure dependencies, this system is not easy to
model.  The usual method of using state-space variables to represent the number of failed computers in
each triad is insufficient because which computers have failed is also important state information.  One
method to model this system is to use the state-space variables as flags to indicate the failure of each
computer and power supply.  This method uses a large number of state-space variables, but the system
can be described with only a few simpleTRANTO statements.  The ASSIST input file is as follows:

LAM_PS = 1E-6;             (* Failure rate of power supplies *)
LAM_C = 1E-5;              (* Failure rate of computers *)

SPACE = (CAF: ARRAY[1..3] OF 0..1,     (* Failed computers in Triad A *)
         CBF: ARRAY[1..3] OF 0..1,     (* Failed computers in Triad B *)
         PSF: ARRAY[1..3] OF 0..1);    (* Failed power supplies *)
START = (9 OF 0);

DEATHIF CAF[1] + CAF[2] + CAF[3] > 1;  (* 2/3 computers in Triad A failed *)
DEATHIF CBF[1] + CBF[2] + CBF[3] > 1;  (* 2/3 computers in Triad B failed *)

FOR I = 1,3
   IF CAF[I]=0 TRANTO CAF[I] = 1 BY LAM_C;
      (* Failure of computer in Triad A *)
   IF CBF[I]=0 TRANTO CBF[I] = 1 BY LAM_C;
      (* Failure of computer in Triad B *)
   IF PSF[I]=0 TRANTO CAF[I] = 1, CBF[I] = 1, PSF[I] = 1 BY LAM_PS;
      (* Power supply failure *)
ENDFOR;

This method of modeling each component individually can lead to a combinatorial explosion in the
number of states in the generated model when the number of components becomes large.  The semi-
Markov model generated for this relatively simple example contains 21 states and 138 transitions.  A
different ASSIST description could be developed for this system by taking advantage of the symmetry
that exists in the system to reduce the model size.  However, that description would be more difficult to
understand and verify.  It is not unusual to encounter a trade-off between the size of the model and the
simplicity of the rules for generating the model.

12.5. Failure Rate Dependencies

Consider a triad of processors in which the processors are protected from voltage surges by voltage
regulators.  The processors fail at rateLAMBDA_P.  The system initially contains two voltage regula-
tors.  These voltage regulators fail at rateLAMBDA_R.  Once both voltage regulators fail, the processors
are also subject to failure due to voltage surges, which arrive at an exponential rateLAMBDA_V.

(* FAILURE RATE DEPENDENCIES *)

LAMBDA_P = 1E-5; (* Permanent failure rate of processors *)
LAMBDA_V = 1E-2; (* Arrival rate of damaging voltage surges *)
LAMBDA_R = 1E-3; (* Failure rate of voltage regulators *)
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SPACE = (NP: 0..3, (* Number of active processors *)
         NFP: 0..3, (* Number of failed active processors *)
         NR: 0..2); (* Number of working voltage regulators *)
START = (3,0,2); (* Start with 3 working processors, 2 regs. *)

DEATHIF 2 * NFP >= NP; (* Voter defeated *)

  (* Processor failures *)
IF NP > NFP TRANTO NFP = NFP+1 BY (NP-NFP)*LAMBDA_P;

  (* Failure of processor due to voltage surge *)
IF (NR = 0) AND (NP > NFP) TRANTO NFP = NFP+1 BY (NP-NFP)*LAMBDA_V;

  (* Voltage regulator failures *)
IF NR > 0 TRANTO NR = NR-1 BY NR*LAMBDA_R;

  (* Reconfiguration *)
IF NFP > 0 TRANTO (NP-1,NFP-1,NR) BY <8.0E-5,3.0E-5>;

Because this model contains only oneDEATHIF statement, all system failure probabilities will be
grouped together.  The addition of anotherDEATHIF statement placed in front of the existing one could
capture the probability of both voltage regulators failing before the system failure condition is reached:

DEATHIF (NR=0) AND (2 * NFP >= NP);

This modification allows the user to better understand the failure modes of the system, but does not
affect the total system failure probability.

12.6. Recovery Rate Dependencies

In this system, the speed of the recovery process is significantly affected by the number of active
components.  This recovery process is modeled by making the recovery rate a function of the state-
space variableNP, which is the number of active processors.

(* RECOVERY RATE DEPENDENCIES *)

N_PROCS = 10;           (* Initial number of processors *)
LAMBDA_P = 8E-3;        (* Permanent failure rate of processors *)

SPACE = (NP: 0..N_PROCS,        (* Number of active processors *)
         NFP: 0..N_PROCS);      (* Number of failed active processors *)

START = (N_PROCS,0);

DEATHIF 2 * NFP >= NP;  (* Voter defeated *)

  (* Processor failures *)
IF NP > NFP TRANTO NFP = NFP+1 BY (NP-NFP)*LAMBDA_P;

  (* Reconfiguration where rate is a function of NP *)
IF NFP > 0 TRANTO (NP-1,NFP-1) BY <NP*1.0E-5 + 3.0E-5,NP*2.0E-6 + 1.0E-5>;

The ASSIST language gives the user great flexibility in describing the reconfiguration behavior of a
system.

13. Multiple Triads With Pooled Spares

This section starts with a simple model of two triads that share a pool of cold spares. Next, models
of systems with various reconfiguration concepts are introduced and spare failures are included. These
models are then generalized to model more than two triads. Finally, the section concludes with a general
discussion of how to model multiple competing recoveries.
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13.1. Two Triads With Pooled Cold Spares

In this section, a system that consists of two triads, which operate independently but replace faulty
processors from a common pool of spares will be modeled.  When the pool of spares runs out, the triads
continue operating with faulty processors and do not degrade to simplex.  The system fails when either
triad has two faulty processors.  This failure can happen because a second fault occurs in a triad before
the first faulty processor can be replaced by an available spare or because the supply of spares to replace
the faulty processors has been exhausted.  For this model, it is assumed that the spares do not fail while
they are inactive.

To facilitate performing trade-off studies, the ASSISTINPUT statement will be used to define a
constantN_SPARES to represent the initial number of spares in the system. The ASSIST program will
query the user interactively for the value of this constant before generating the model.

Because the triads do not degrade to a simplex configuration, there is no need to track the current
number of processors in a triad.  Thus, the state of each triad can be represented by a single variableNW,
which is the number of working processors.  Similarly, the spares do not fail while they are inactive, so
their state can be represented by a single variableNS, which is the number of spares available.  Thus, the
state space is

SPACE = (NW1, NW2, N_SPARES);

The full model description is

(*  TWO TRIADS WITH POOL OF SPARES *)

INPUT N_SPARES;         (* Number of spares *)
LAMBDA_P = 1E-4;        (* Failure rate of active processors *)
DELTA1 = 3.6E3;         (* Reconfiguration rate of triad 1 *)
DELTA2 = 6.3E3;         (* Reconfiguration rate of triad 2 *)

SPACE = (NW1,           (* Number of working processors in triad 1 *)
         NW2,           (* Number of working processors in triad 2 *)
         NS);           (* Number of spare processors *)

START = (3, 3, N_SPARES);

   (* Active processor failure *)
IF NW1 > 0 TRANTO NW1 = NW1-1 BY NW1*LAMBDA_P;
IF NW2 > 0 TRANTO NW2 = NW2-1 BY NW2*LAMBDA_P;

   (* Replace failed processor with working spare *)
IF (NW1 < 3) AND (NS > 0) TRANTO NW1 = NW1+1, NS = NS-1 BY FAST DELTA1;
IF (NW2 < 3) AND (NS > 0) TRANTO NW2 = NW2+1, NS = NS-1 BY FAST DELTA2;

DEATHIF NW1 < 2;       (* Two faults in triad 1 is system failure *)
DEATHIF NW2 < 2;       (* Two faults in triad 2 is system failure *)

The start state is(3, 3, N_SPARES) , which indicates that both triads have a full complement of
working processors and the number of initial spares isN_SPARES. The first twoTRANTO rules define
the fault-arrival process in each triad.  This process is modeled by decrementing eitherNW1 or NW2
depending upon which triad experiences the failure.  The next twoTRANTO rules define recovery by
replacing the faulty processor with a spare. These rules are conditioned uponNS > 0, that is, if there
are no spares, recovery cannot take place.  The result of reconfiguration is the replacement of the faulty
processor with a working processor (NWx = NWx + 1  for triadx ) and depletion of one spare from the
pool (NS = NS - 1 ).  The system fails whenever either triad experiences two or more coincident
faults (NW1 < 2 or NW2 < 2 ).

This system has two different recovery processes—recovery in triad 1 and recovery in triad 2—that
can potentially occur at the same time.  Because this model was developed with the assumption that the
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completion times for both recovery processes are exponentially distributed, the SURE keywordFAST
was used. Thus, the SURE program will automatically calculate the conditional recovery rates wherever
these two recovery processes compete.  This feature was described in section 5.2.7.  Modeling of multi-
ple competing recovery processes that are not exponentially distributed and systems in which the com-
peting recoveries are not independent are  discussed in section 13.8.

13.2. Two Triads With Pooled Cold Spares Reducible to One Triad

The model given in section 13.2 can be modified easily to describe a system that can survive with
only one triad.  This strategy was used in theFTMP system (ref. 23).  If spares are available, the system
reconfigures by replacing a faulty processor with a spare.  If no spares are available, the faulty triad is
removed and its good processors are added to the spares pool.  There is one exception, however.  When
only one triad is left, the system maintains the faulty triad until it can no longer out vote the faulty pro-
cessor, that is, until the second fault arrives. This system is said to be reducible to one triad.  This situa-
tion is very different from degradation.  Note that it requires that the system be capable of surviving
with only one triad of processing power,  although it initially begins with significantly more parallel
computational power in the form of multiple triads.

As before, this model assumes that the spares are cold, that is, they do not fail while inactive.  The
state space must be modified to include whether a triad is active or not.  This modification is accom-
plished by settingNWx = 0  when triadx  is inactive.  The number of triads is maintained in a state-
space variableNT. Although this variable is redundant because the number of active triads can be deter-
mined by looking atNW1 andNW2, the inclusion of this extra state-space variable greatly simplifies the
ASSIST input description.  Thus, the state space is

SPACE = (NW1,      (* Number of working processors in triad 1 *)

NW2,      (* Number of working processors in triad 2 *)

         NT,       (* Number of active triads *)

         NS);      (* Number of spare processors *)

The initial state is (3, 3, 2, N_SPARES ).  TheDEATHIF statement becomes

DEATHIF (NW1 = 1) OR (NW2 = 1);

Note that the statementDEATHIF (NW1 < 2) OR (NW2 < 2);  is wrong.  This statement
would conflict with the strategy of settingNWx equal to 0 when triadx  becomes inactive.  Note also that
the condition(NW1 = 0) AND (NW2 = 0) is also not included.  This clause could be added, but it
would not change the model because the last triad is never collapsed into spares.  Thus, this condition
can never be satisfied.

Next, two new constantsOMEGA1 andOMEGA2 that define the rate at which triads are collapsed
when no spares are available are defined:

OMEGA1 = 5.6E3;               (* Collapsing rate of triad 1 *)

OMEGA2 = 8.3E3;               (* Collapsing rate of triad 2 *)

The fault-arrival rules are the same as in the previous model. However, the reconfiguration specifi-
cation must be altered.  The rules for each triadx  are

IF (NWx = 2) AND (NS > 0) TRANTO NWx = NWx+1, NS = NS-1

BY FAST DELTAx;

IF (NWx = 2) AND (NS = 0) AND (NT > 1) TRANTO NWx = 0, NS = NS+2, NT = NT-1

BY FAST OMEGAx;

The first rule defines reconfiguration by replacement with a spare.  Thus, this rule is conditioned by
(NS > 0) .  The second rule defines the collapsing of a triad when no spares are available, that is,
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whenNS = 0.  Note that the condition(NT > 1) prevents the collapse of the last triad.  The complete
model is

(*  TWO TRIADS WITH POOL OF SPARES --> 1 TRIAD *)
INPUT N_SPARES;         (* Number of spares *)
LAMBDA1 = 1E-4;         (* Failure rate of active processors *)
LAMBDA2 = 1E-4;         (* Failure rate of active processors *)
DELTA1 = 3.6E3;         (* Reconfiguration rate of triad 1 *)
DELTA2 = 6.3E3;         (* Reconfiguration rate of triad 2 *)
OMEGA1 = 5.6E3;         (* Collapsing rate of triad 1 *)
OMEGA2 = 8.3E3;         (* Collapsing rate of triad 2 *)

SPACE = (NW1,           (* Number of working processors in triad 1 *)
         NW2,           (* Number of working processors in triad 2 *)
         NT,            (* Number of active triads *)
         NS);           (* Number of spare processors *)

START = (3, 3, 2, N_SPARES);

   (* Active processor failure *)
IF (NW1 > 0) TRANTO NW1 = NW1-1 BY NW1*LAMBDA1;
IF (NW2 > 0) TRANTO NW2 = NW2-1 BY NW2*LAMBDA2;

   (* Replace failed processor with working spare *)
IF (NW1 = 2) AND (NS > 0) TRANTO NW1 = NW1+1, NS = NS-1 BY FAST DELTA1;
IF (NW2 = 2) AND (NS > 0) TRANTO NW2 = NW2+1, NS = NS-1 BY FAST DELTA2;
IF (NW1 = 2) AND (NS = 0) AND (NT > 1) TRANTO NW1 = 0, NS = NS+2, NT = NT-1
     BY FAST OMEGA1;    (* Degrade to one triad only -- triad 2 *)
IF (NW2 = 2) AND (NS = 0) AND (NT > 1) TRANTO NW2 = 0, NS = NS+2, NT = NT-1
     BY FAST OMEGA2;    (* Degrade to one triad only -- triad 1*)

DEATHIF (NW1 = 1) OR (NW2 = 1);

13.3. Two Degradable Triads With Pooled Cold Spares

The system modeled in this section consists of two triads that can degrade to a simplex.  However,
unlike the previous example, this system requires the throughput of two processors.  Therefore, the sys-
tem does not degrade to one triad.  Instead, when no spares are available, the system degrades the faulty
triad into a simplex. The extra nonfaulty processor is added to the spares pool.

In this system, each of two triads can be degraded into a simplex.  Therefore, it is necessary to add
state-space variables that indicate whether the active configuration is a triad or simplex. Otherwise it is
impossible to determine whether each state that satisfies the conditionNWx = 1 for triadx  is a failed
state (one good out of three) or an operational state (one good out of one).  Thus, two state-space vari-
ables,NC1 andNC2, are added to the model to indicate the total number of processors in the current
configuration of each triad.  If triadx  still has three active processors, thenNCx = 3;  if triad x  has
already degraded to a simplex, thenNCx = 1.  The complete state space is

SPACE = (NC1,           (* Number of active processors in triad 1 *)
         NW1,           (* Number of working processors in triad 1 *)
         NC2,           (* Number of active processors in triad 2 *)
         NW2,           (* Number of working processors in triad 2 *)
         NS);           (* Number of spare processors *)

The initial state is(3, 3, 3, 3, N_SPARES)  whereN_SPARES represents the number of proces-
sors in the spares pool initially.  The processor failure rules are the same as in previous models.  As
expected, the reconfiguration rules must be altered.  These rules for each triad are
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IF (NWx < 3) AND (NCx = 3) AND (NS > 0) TRANTO NWx = NWx+1, NS = NS-1
     BY FAST DELTAx;    (* Replace failed processor with working spare *)

IF (NWx < 3) AND (NS = 0) AND (NCx=3) TRANTO NCx = 1, NWx = 1, NS = NS+1
     BY FAST OMEGAx;    (* Degrade to simplex *)

wherex  represents triad 1 or triad 2.  The first rule describes the replacement of a faulty processor in a
triad with a spare.  Note that the condition NCx = 3  has been added. Otherwise states withNWx = 1
andNCx = 1 (i.e., a good simplex processor) would erroneously have a recovery transition leaving
them.  The second rule describes the process of degrading a triad to a simplex.  Note that this process is
only done when no spares are available, that is,NS = 0.  Also, the extra nonfaulty processor is
returned to the spares pool, that is,NS = NS + 1 .  TheDEATHIF conditions are

DEATHIF 2*NWx <= NCx;

for each triadx .  This condition restricts the operational states to only those where a majority of the pro-
cessors are working.  The complete specification is

(*  TWO DEGRADABLE TRIADS WITH A POOL OF SPARES *)

INPUT N_SPARES;         (* Number of spares *)
LAMBDA1 = 1E-4;         (* Failure rate of processor in triad 1 *)
LAMBDA2 = 1E-4;         (* Failure rate of processor in triad 2 *)
DELTA1 = 3.6E3;         (* Reconfiguration rate of triad 1 *)
DELTA2 = 6.3E3;         (* Reconfiguration rate of triad 2 *)
OMEGA1 = 5.6E3;         (* Reconfiguration rate of triad 1 *)
OMEGA2 = 8.3E3;         (* Reconfiguration rate of triad 2 *)

SPACE = (NC1,           (* Number of active processors in triad 1 *)
         NW1,           (* Number of working processors in triad 1 *)
         NC2,           (* Number of active processors in triad 2 *)
         NW2,           (* Number of working processors in triad 2 *)
         NS);           (* Number of spare processors *)

START = (3, 3, 3, 3, N_SPARES);

   (* Active processor failure *)
IF NW1 > 0 TRANTO NW1 = NW1-1 BY NW1*LAMBDA1;
IF NW2 > 0 TRANTO NW2 = NW2-1 BY NW2*LAMBDA2;

   (* Replace failed processor with working spare *)
IF (NW1 < 3) AND (NC1 = 3) AND (NS > 0) TRANTO NW1 = NW1+1, NS = NS-1
     BY FAST DELTA1;
IF (NW2 < 3) AND (NC2 = 3) AND (NS > 0) TRANTO NW2 = NW2+1, NS = NS-1
     BY FAST DELTA2;

   (* Degrade to simplex *)
IF (NW1 < 3) AND (NS = 0) AND (NC1=3) TRANTO NC1 = 1, NW1 = 1, NS = NS+1
     BY FAST OMEGA1;
IF (NW2 < 3) AND (NS = 0) AND (NC2=3) TRANTO NC2 = 1, NW2 = 1, NS = NS+1
     BY FAST OMEGA2;

DEATHIF 2*NW1 <= NC1;
DEATHIF 2*NW2 <= NC2;

 All previous models have used the simplifying assumption that spare processors cannot fail until
they are brought into the active configuration. While this assumption significantly simplifies the model-
ing, it is too optimistic an assumption for many systems, especially those with long mission times.
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13.4. Two Degradable Triads With Pooled Warm Spares

The models presented in section 13.3 can be generalized by allowing the spares to fail while in-
active. This generalization can be accomplished by adding a variableNWS to track the number of work-
ing spares.  A rule for generating the transitions corresponding to the failure of the spares must be added

LAMBDA_S = 1E-5;           (* Failure rate of inactive warm spare *)

IF NWS > 0 TRANTO NWS = NWS - 1 BY NWS*LAMBDA_S;

In this system, the failure of a warm spare is not detectable. Thus, faulty spares can be brought into the
active configuration by a recovery process.  The recoveryTRANTO rules must cover two cases:

1. Recovery with a working spare

2. Recovery with a faulty spare

BecauseNWS working spares andNS-NWS faulty spares remain, the probability of selecting a
working spare isNWS/NS and the corresponding recovery rate is(NWS/NS)*DELTA1 .  Similarly, the
rate of recovery with a faulty spare is((NS-NWS)/NS)*DELTA1 . Notice that the sum of these two
rates areDELTA1, as one would expect.

Also the reconfiguration process must be generalized to include two distinct results:

1. A faulty warm spare is brought into the active configuration.

2. A working warm spare is brought into the active configuration.

Thus, the model presented in section 13.3 can be modified to describe a system of two degradable triads
with a pool of warm spares:

(*  TWO DEGRADABLE TRIADS WITH A POOL OF WARM SPARES *)

INPUT N_SPARES;         (* Number of spares *)
LAMBDA1 = 1E-4;         (* Failure rate of processor in triad 1 *)
LAMBDA2 = 1E-4;         (* Failure rate of processor in triad 2 *)
LAMBDA_S = 1E-5;        (* Failure rate of spare processors *)
DELTA1 = 3.6E3;         (* Reconfiguration rate of triad 1 *)
DELTA2 = 6.3E3;         (* Reconfiguration rate of triad 2 *)
OMEGA1 = 5.6E3;         (* Reconfiguration rate of triad 1 *)
OMEGA2 = 8.3E3; (* Reconfiguration rate of triad 2 *)

SPACE = (NC1,           (* Number of active processors in triad 1 *)
         NW1,           (* Number of working processors in triad 1 *)
         NC2,           (* Number of active processors in triad 2 *)
         NW2,           (* Number of working processors in triad 2 *)
         NS,            (* Total number of warm spares *)
         NWS);          (* Number of working warm spares*)

START = (3, 3, 3, 3, N_SPARES, N_SPARES);

IF NW1 > 0 TRANTO NW1 = NW1-1 BY NW1*LAMBDA1;  (* Active processor failure *)
IF NW2 > 0 TRANTO NW2 = NW2-1 BY NW2*LAMBDA2;  (* Active processor failure *)
IF NWS > 0 TRANTO NWS = NWS-1 BY NWS*LAMBDA_S;  (* Warm spare failure *)

IF (NW1 < 3) AND (NC1 = 3) THEN        (* Triad 1 has a fault *)
   IF (NWS > 0)                        (* Replace with working spare *)
      TRANTO NW1 = NW1+1, NS = NS-1, NWS = NWS - 1
         BY FAST (NWS/NS)*DELTA1;
   IF (NS > NWS)                       (* Replace with failed spare *)
      TRANTO NS = NS-1 BY FAST ((NS-NWS)/NS)*DELTA1;
ENDIF;
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IF (NW2 < 3) AND (NC2 = 3) THEN        (* Triad 2 has a fault *)
   IF (NWS > 0)                        (* Replace with working spare *)
      TRANTO NW2 = NW2+1, NS = NS-1, NWS = NWS - 1
          BY FAST (NWS/NS)*DELTA2;
   IF (NS > NWS)                       (* Replace with failed spare *)
      TRANTO NS = NS-1 BY FAST ((NS-NWS)/NS)*DELTA2;

ENDIF;

IF (NW1 < 3) AND (NS = 0) AND (NC1=3)           (* Degrade to simplex *)
      TRANTO NC1 = 1, NW1 = 1, NS = NS+1, NWS = NWS + 1 BY FAST OMEGA1;
IF (NW2 < 3) AND (NS = 0) AND (NC2=3)           (* Degrade to simplex *)
   TRANTO NC2 = 1, NW2 = 1, NS = NS+1, NWS = NWS + 1 BY FAST OMEGA2;

DEATHIF 2*NW1 <= NC1;
DEATHIF 2*NW2 <= NC2;

Four sections are devoted to recovery in this model.  The first two sections cover the recovery of the
two triads by using a spare.  The last two sections deal with the situation where no spares are available
and the triad is degraded to a simplex.  Notice that the first two sections begin with anIF  test of the
form

IF (NWx < 3) AND (NCx = 3) THEN           (* Triad x has a fault *)

The second term of theIF  test (NCx = 3)  insures that the triad is still intact.  The first term
(NWx < 3)  indicates that a failed processor exists in the triad.  The last two recovery sections begin
with  anIF  test of the form

IF (NWx < 3) AND (NS = 0) AND (NCx=3)     (* Degrade to simplex *)

The last term of theIF  test (NCx = 3)  insures that the triad is still intact.  The first term
(NWx < 3)  indicates that a failed processor exists in the triad.  The second term(NS=0)  indicates
that no spares are available.

If the system were designed so that the extra working processor of a collapsed triad were not added
to the spares pool, the last two recoveryTRANTO sections would be as follows:

IF (NW1 < 3) AND (NS = 0) AND (NC1=3)          (* Degrade to simplex *)
   TRANTO NC1 = 1, NW1 = 1 BY FAST OMEGA1;
IF (NW2 < 3) AND (NS = 0) AND (NC2=3)          (* Degrade to simplex *)
   TRANTO NC2 = 1, NW2 = 1 BY FAST OMEGA2;

with theNS = NS+1, NWS = NWS + 1  phrases removed.

13.5. Multiple Nondegradable Triads With Pooled Cold Spares

This section demonstrates development of a generalized description that can be used to model an
arbitrary number of triads.  This modeling will be accomplished by creating a general specification that
will work for any number of initial triads and having the ASSIST program prompt for a specific value to
generate a specific model.

For simplicity, a system that is incapable of collapsing a triad into either a simplex or into spares
will be investigated. Thus, this system fails when any triad fails. This first model will be simplified by
assuming that cold spares cannot fail until they are brought into the active configuration. The complete
generalized specification is

(*  MULTIPLE TRIADS WITH POOL OF COLD SPARES *)

INPUT N_TRIADS;              (* Number of triads initially *)
INPUT N_SPARES;              (* Number of spares *)
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LAMBDA = 1E-4;               (* Failure rate of active processors *)
DELTA = 5.1E3;               (* Reconfiguration rate to switch in spare *)

SPACE = (NW: ARRAY[1..N_TRIADS] OF 0..3, (* Number working procs per triad *)
         NS);                             (* Number of spare processors *)

START = (N_TRIADS OF 3, N_SPARES);

FOR J = 1, N_TRIADS;

      (* Active processor failure *)
   IF NW[J] > 0 TRANTO NW[J] = NW[J]-1 BY NW[J]*LAMBDA;

      (* Replace failed processor with working spare *)
   IF (NW[J] < 3) AND (NS > 0) TRANTO NW[J] = NW[J]+1, NS = NS-1
      BY FAST DELTA^J;

   DEATHIF NW[J] < 2;        (* Two faults in a triad is system failure *)

ENDFOR;

The array state-space variableNW contains a value for each triad representing a count of the number
of working processors in that triad. Similarly, theFOR loop, which terminates at theENDFOR statement,
defines for each triad

1.  The active processor failures in that triad

2. The replacement of failed processors in that triad with spares from the pool

3. The conditions for that triad that result in system failure

To accommodate systems with different reconfiguration rates for different triads, the concatenation
feature was used in the rate expression of the reconfigurationTRANTO statement.  The rate expression
BY FAST DELTA^J within the FOR loop results in a reconfiguration rate ofFAST DELTA1 for
triad 1 andFAST DELTA2 for triad 2.  Unfortunately, because the number of triads is unknown until
run time (N_TRIADS is specified with theINPUT statement), no way exists to assign values to these
identifiers.  This must be done by editing the output file or entering them at SURE run time.  For sim-
plicity, the rest of the models in this section will assume that all triads have the same reconfiguration
rates.

13.6. Multiple Triads With Pooled Cold Spares Reducible to One

In this section, the simple model given  in section 13.5 will be modified to allow degradation of tri-
ads.  When no spares are available, each faulty triad is broken up and the nonfaulty processors are added
to the spares pool. It is assumed that the system can operate with degraded performance with the
throughput of only one processor. In other words, although the initial configuration consists of multiple
triads, the system can still maintain its vital functions with only one triad remaining.  Because triads will
be broken up, a method of deciding whether a triad is active is needed.  This method adds an array state-
space variableNP to track the number of active processors in a triad.  This variable will have the value
of  3 for each triad initially and will be set to 0 for each triad when it is broken up.  The array state-space
variableNFP counts the number of failed processors active in each triad.  The state-space variableNT is
used to  track  how many triads are still in operation.  This variable will always equal the number of
nonzero entries in arrayNP.  Thus, it is in some sense redundant.  However, the specification of the
TRANTO is simplified by including it in theSPACE statement.

The specification is

(*  REDUCEABLE MULTIPLE TRIADS WITH POOL OF COLD SPARES *)

INPUT N_TRIADS;              (* Number of triads initially *)
INPUT N_SPARES;              (* Number of spares *)
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LAMBDA = 1E-4;               (* Failure rate of active processors *)
DELTA1 = 3.6E3;              (* Reconfiguration rate to switch in spare *)
DELTA2 = 5.1E3;              (* Reconfiguration rate to break up a triad *)

SPACE = (NP: ARRAY[1..N_TRIADS] OF 0..3,  (* Number of processors per triad *)
         NFP: ARRAY[1..N_TRIADS] OF 0..3, (* Num. failed active procs/triad *)
         NS,                 (* Number of spare processors *)
         NT: 0..N_TRIADS);   (* Number of non-failed triads *)

START = (N_TRIADS OF 3, N_TRIADS OF 0, N_SPARES, N_TRIADS);

FOR J = 1, N_TRIADS;

   IF NP[J] > NFP[J] TRANTO NFP[J] = NFP[J]+1
        BY (NP[J]-NFP[J])*LAMBDA;  (* Active processor failure *)

   IF NFP[J] > 0 THEN
      IF NS > 0 THEN TRANTO NFP[J] = NFP[J]-1, NS = NS-1
            BY FAST DELTA1;
            (* Replace failed processor with working spare *)

      ELSE
       IF NT > 1 TRANTO NP[J]=0, NFP[J]=0, NS = NS + (NP[J]-NFP[J]), NT = NT-1
            BY FAST DELTA2;
            (* Break up a failed triad when no spares available *)
      ENDIF;
   ENDIF;

   DEATHIF 2 * NFP[J] >= NP[J] AND NP[J] > 0;
     (* Two faults in an active triad is system failure *)

ENDFOR;

 As before, allTRANTO andDEATHIF statements are set inside of aFOR loop so that they are
repeated for each triad.  The firstTRANTO statement defines failure of an active processor.  When a
triad has an active failed processor, the secondTRANTO statement replaces that failed processor with
one from the pool of spares.  If no spares are available, then the faulty triad is broken up and its working
processors are put into the spares pool. (This procedure assumes that the system can determine which
processor has failed with 100-percent accuracy.)  However, if the faulty triad is the last triad in the sys-
tem (i.e.,NT <= 1) then the triad is not broken up. This test makes the statementDEATHIF NT = 0
unnecessary. The last triad is allowed to continue operation with one faulty processor until another of its
processors fails and defeats the voter.  The singleDEATHIF statement captures the occurrence of the
second fault in the last triad as well as near-coincident faults in the other triads.

The following sequence of states represents a typical path through the model:

(3,3,3,0,0,0,1,3) -> (3,3,3,0,0,1,1,3) -> (3,3,3,0,0,0,0,3) ->
(3,3,3,1,0,0,0,3) -> (0,3,3,0,0,0,2,2) -> (0,3,3,0,1,0,2,2) ->
(0,3,3,0,0,0,1,2) -> (0,3,3,0,1,0,1,2) -> (0,3,3,0,0,0,0,2) ->
(0,3,3,0,1,0,0,2) -> (0,0,3,0,0,0,2,1) -> ...

 13.7. Multiple Reducible Triads With Pooled Warm Spares

The model given in section 13.7 can be easily modified to include spare failures:

(*  REDUCIBLE MULTIPLE TRIADS WITH POOL OF WARM SPARES *)

INPUT N_TRIADS;              (* Number of triads initially *)
INPUT N_SPARES;              (* Number of spares *)
LAMBDA_P = 1E-4;             (* Failure rate of active processors *)
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LAMBDA_S = 1E-5;             (* Failure rate of warm spare processors *)
DELTA1 = 3.6E3;              (* Reconfiguration rate to switch in spare *)
DELTA2 = 5.1E3;              (* Reconfiguration rate to break up a triad *)

SPACE = (NP: ARRAY[1..N_TRIADS] OF 0..3,  (* Number of processors per triad *)
         NFP: ARRAY[1..N_TRIADS] Of 0..3, (* Num. failed active procs/triad *)
         NS,                 (* Number of spare processors *)
         NFS,                (* Number of failed spare processors *)
         NT: 0..N_TRIADS);   (* Number of non-failed triads *)

START = (N_TRIADS OF 3, N_TRIADS OF 0, N_SPARES, 0, N_TRIADS);

IF NS > NFS TRANTO NFS = NFS+1 BY (NS-NFS)*LAMBDA_S;  (* Spare failure *)

FOR J = 1, N_TRIADS;

   IF NP[J] > NFP[J] TRANTO NFP[J] = NFP[J]+1
        BY (NP[J]-NFP[J])*LAMBDA_P;  (* Active processor failure *)

   IF NFP[J] > 0 THEN
      IF NS > 0 THEN
         IF NS > NFS TRANTO NFP[J] = NFP[J]-1, NS = NS-1
            BY FAST (1-(NFS/NS))*DELTA1;
            (* Replace failed processor with working spare *)

         IF NFS > 0 TRANTO NS = NS-1, NFS = NFS-1
            BY FAST (NFS/NS)*DELTA1;
            (* Replace failed processor with failed spare *)

      ELSE
         IF NT > 1 TRANTO NP[J]=0, NFP[J]=0, NS = NP[J]-NFP[J], NT = NT-1
            BY FAST DELTA2;
            (* Break up a failed triad when no spares available *)
      ENDIF;
   ENDIF;

   DEATHIF 2 * NFP[J] >= NP[J] AND NP[J] > 0;
     (* Two faults in an active triad is system failure *)

ENDFOR;

The additional state-space variableNFS is needed to  track  how many failed spares are in the spares
pool.  The failure of spares is defined by the firstTRANTO statement.  Note the placement of this state-
ment outside of theFOR loop. If this statement were incorrectly placed inside of theFOR loop, it would
be equivalent to having the spare failure rate multiplied byN_TRIADS.  This model includes two
TRANTO statements to define replacement of a failed processor with a spare.  The first statement defines
replacement of the failed processor with a working spare that is conditional on the existence of non-
failed spares.  The second statement defines replacement of a failed processor with a failed spare that is
conditional upon the existence of failed spares.

13.8. Multiple Competing Recoveries

In the examples of multiple triads with pooled spares,  the first example of a model containing states
with multiple recovery processes that leave a single state was encountered. Multiple recovery processes
occurs when multiple faults accumulate in different parts of the system that together do not cause sys-
tem failure.  The diagram in figure 41 illustrates this concept.

In this model, two triads are accumulating faults—the first at rateλ1 and the second at rateλ2.  In
state (2,2,7),  both triads have a faulty processor active at the same time.  This situation is not system
failure because the two failures are in separately voted triads. Two recoveries are possible from this
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state—triad 1 recovers first then triad 2, or triad 2 recovers first then triad 1. Which case occurs depends
upon how long each recovery takes.

In some systems, the recovery process may take longer when another recovery is also ongoing in
the system. When the two recovery processes have no effect on each other in the system, the presence of
competing recoveries still impacts the transition specification because the SURE program requires con-
ditional means and conditional standard deviations for the competing recovery processes.  Consider the
simple case of two identical recovery distributions.  On average, half of the time triad 1 will recover
first, and half of the time triad 2 will recover first. The conditional mean recovery time is the mean of
the minimum of the two competing recovery times.  The SURE program also requires the specification
of a third parameter—the transition probability. The transition probability is the probability that this
transition will be traversed rather than one of the other fast transitions leaving this state.  The sum of the
transition probabilities given for all  fast transitions leaving a state must equal one.

In all the preceeding examples of section 13, the recovery processes were assumed to be exponen-
tially distributed, and theSURE FAST keyword was used to specify these transitions.  As discussed in
section 5.2.7, theFAST keyword causes the SURE program to automatically calculate the conditional
rates from the unconditional fast exponential rates that are provided.

For systems with nonexponential recovery times or in which recovery times are affected by the
presence of other competing recoveries, the problem of competing recoveries can be difficult to model
accurately.  How the system actually behaves in state (2,2,7) of the two-triad example depends upon the
design of the redundancy management system.  Many possibilities exist.  To illustrate, three possible
systems are discussed:

1. The system always repairs triad 1 first

2. The system repairs both triads at the same time

3. Two independent repair processes take place

The model for case 1 in which triad 1 is always repaired first, is shown in figure 42.  Although the
two recovery transitions no longer occur simultaneously, the recovery transition rates,R1_FIRST and
R2_SECOND, may or may not have the same distribution as the noncompeting recovery transition rates,
R1 and R2. This distribution depends on the system, and may be determined by analysis or
experimentation.

Figure 41.  Model with multiple competing recoveries.
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The case 2 model of both triads being repaired at the same time is shown in figure 43.  The mean
and the standard deviation of the multiple recovery transition must be measured experimentally. This
measurement can be accomplished by injecting two simultaneous faults and measuring the time to
recovery completion.

The third case, two independent repair processes, is shown in figure 44. If the two recoveries are
truly independent and not competing for resources, the transition rates will be different from the non-
competing rates because they are conditional upon winning the competition. The conditional means and
standard deviations cannot be analytically determined from the unconditional recovery distributions in
general; therefore, these four distributions must be measured experimentally.

14. Multiple Triads With Other Dependencies

In this section, the analysis of systems that consist of multiple triads is continued.  However, other
dependencies will be analyzed here.

14.1. Modeling Multiple Identical Triads

In the previous sections, specific triads that were faulty in  the models were tracked.  This tracking
was necessary because different triads had different failure rates and different recovery rates.  However,
if all triads are identical, then a substantially simpler model can be developed that takes advantage of the
extra symmetry. Because of the symmetry, the specific triad that was faulty need not be tracked.
Instead, the number of triads with faults must be counted.  The following set of attributes are sufficient
to characterize this system:

Figure 42.  Triad 1 always repaired first.

Figure 43.  Both triads repaired simultaneously.
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1. NAT, number of active triads

2. NTWF, number of triads with one fault

3. NS, number of spares available

4. NCF, one if and only if near-coincident failure

5. NI , number of triads initially

6. NSI , number of initial spares

7. MNT, minimum number of triads needed

If a processor in a triad fails, theNTWF variable is incremented.  If a second processor in a triad
fails, then theNCF variable is set to 1.  Any state withNCF = 1 is a death state.  The system replaces
faulty processors by a spare.  This replacement is represented by decrementing theNTWF variable by 1
and the number of spares variableNS by 1.  If no spares are available, the system removes the faulty
triad from the system.  The remaining good processors are added to the spares pool.  This addition is
accomplished by decrementing theNAT variable by 1, decrementing the NTWF variable by 1, and
incrementing the number of spares variable by 2.  The complete ASSIST model is

LAMBDA = 1e-4;
DELTA1 = 1e4;
DELTA2 = 1e4;
INPUT NI;       (* Number of triads initially *)
INPUT NSI;      (* Number of spares initially *)
INPUT MNT;      (* Minimum number triads needed *)

Figure 44.  Two independent repair processes.
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SPACE = (NAT: 0..NI,    (* Number of Active Triads *)
         NTWF: 0..NI,   (* Number of Triads with 1 fault *)
         NS: 0..NSI,    (* Number of Available Spares *)
         NCF: 0..1);    (* 1 iff near-coincident failure *)

START = (NI,0,NSI,0);

IF NAT > 0 THEN
   IF NAT > NTWF TRANTO NTWF = NTWF + 1 BY 3*(NAT-NTWF)*LAMBDA;
   IF NTWF > 0 TRANTO NCF = 1 BY 2*(NTWF)*LAMBDA;
   IF (NTWF > 0) THEN
      IF NS > 0 THEN
         TRANTO NTWF = NTWF - 1, NS = NS - 1 BY FAST NTWF*DELTA2;
      ELSE
         IF NAT > MNT TRANTO NAT = NAT - 1, NTWF = NTWF - 1, NS = NS + 2
                                  BY FAST NTWF*DELTA1;
      ENDIF;
   ENDIF;
ENDIF;
DEATHIF (NAT=MNT) AND NCF=1;
DEATHIF NCF = 1;

14.2. Multiple Triad Systems With Limited Ability to Handle  Multiple Faults

 The example considered in this section is similar to (and motivated by) a system analyzed by
Alan White of the Assessment Technology Branch at Langley Research Center.  The system consists of
N triads. If a processor in a triad fails and spares are available, the system repairs the triad with a spare.
If no spares are available, the system removes the faulty triad from the configuration and adds the good
processors to the spares pool.  System failure occurs  when a triad has two faulty processors (i.e., a sec-
ond processor fails before it can be repaired or removed from the system) or when not enough triads
remain to run the workload (exhaustion of parts).  The system has difficulty diagnosing which proces-
sors are faulty when more than one triad has a faulty processor.  Therefore, in this situation, the system
does not reconfigure. For simplicity, the system is assumed to never misdiagnose a faulty processor and
know when it has more than one triad with a faulty processor.

14.2.1. Two triads. In this section, a two-triad configuration will be modeled, that is, a system with
two initial triads that can still operate with only one triad. The complete model is shown in figure 45.

Initially the system has two good triads and no spares.  Thus, the first transition is from state (3)→
state (4) with rate 6λ.  After the system is in state (4) several events can happen.  Another processor in
the same triad could fail and cause system failure (i.e., enter state (1)). This failure is a near-coincident
failure that occurs at rate 2λ. Alternatively, the system could recover from the first fault and go to
state (6).  One option remains; a processor could fail in the other triad.  This causes the system to enter
state (5) and occurs at rate 3λ. The rest of the model is clear if one keeps in mind that the two good pro-
cessors of the removed triad are made spares.  Thus, the recovery transitions from state (7)→ state (8)
and from state (9)→ state (10) replace a faulty processor with a spare.  While not active, the failure rate
of the spares is assumed to be 0 to simplify the model.

One interesting question to explore is whether the trimming of all failure transitions from a recovery
state that does not immediately lead to a death state is a good approximation.  Such an approach would
lead to the model shown in figure 46.  In this model, the transition from state (4)→ state (5) has been
removed.
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The probability of system failure after 1000 hr is given in table 2.  For this system, the difference is
clearly negligible. It is important that a bound on the error due to removing these transitions be
calculated. In the next section, an example of the contribution of the removed states is shown to be
significant.

 14.2.2. N triads.In this section, a system consisting ofNI  triads will be analyzed.  The largerNI
becomes, the larger the number of transitions removed by the strategy described in the previous section
becomes. Consider a system with 10 triads.  A portion of the 175-state model that begins with 10 triads
is shown in figure 47.

Figure 45.  Full model of two triads.

Figure 46.  Trimmed model of two triads.
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A complete description of the model can be given with the ASSIST language:

LAMBDA = 1e-4;  (* processors failure rate *)
DELTA1 = 1e4;   (* reconfiguration by collapsing a triad *)
DELTA2 = 1e4;   (* reconfiguration by replacing with a spare *)
INPUT NI;       (* Number of triads initially *)
INPUT MNT;      (* Minimum number triads needed *)
INPUT MAXNTF;   (* Maximum number of faults handled *)
TIME = 1000;

SPACE = (NAT: 0..NI,    (* Number of Active Triads *)
         NTWF: 0..NI,   (* Number of Triads with 1 fault *)
         NS: 0..NI*3,   (* Number of Available Spares *)
         NCF: 0..1);    (* 1 iff near-coincident failure *)

START = (NI,0,0,0);

IF NAT > 0 THEN
   IF NAT > NTWF TRANTO NTWF = NTWF + 1 BY 3*(NAT-NTWF)*LAMBDA;

aSee figure 45.
bSee figure 46.

Table 2. Pf  Estimated by PAWS for State (2,1) at 1000 hr,

λ = 10−4/hr, andδ = 104/hr

Model Pf

Full modela 2.03968× 10−5

Trimmed modelb 2.03942× 10−5

Figure 47.  Full model ofN triads.
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   IF NTWF > 0 TRANTO NCF = 1 BY 2*(NTWF)*LAMBDA;
   IF (NTWF > 0) AND (NTWF <= MAXNTF) THEN
      IF NS > 0 THEN
        TRANTO NTWF = NTWF - 1, NS = NS - 1 BY FAST NTWF*DELTA2;
      ELSE
        IF NAT > MNT TRANTO NAT = NAT - 1, NTWF = NTWF - 1, NS = NS + 2
                                  BY FAST NTWF*DELTA1;
      ENDIF;
   ENDIF;
ENDIF;
DEATHIF (NAT=MNT) AND NCF=1;
DEATHIF NCF = 1;

This model differs from theN independent identical triads modeled in section 14.1 by the use of an addi-
tional test on the reconfigurationTRANTO rule:

IF (NTWF > 0) AND (NTWF <= MAXNTF) THEN

This rule is only enabled when(NTWF <= MAXNTF) , that is, when the number of triads with faults is
less than the limit that the operating system can handleMAXNTF.

The model generated forNI = 2  follows:

LAMBDA = 1E-4;
DELTA1 = 1E4;
DELTA2 = 1E4;
NI = 2;
MNT = 1;
MAXNTF = 99;
TIME = 1000;

3(* 2,0,0,0 *),  4(* 2,1,0,0 *) = 3*(2-0)*LAMBDA;
4(* 2,1,0,0 *), 5(* 1,0,2,0 *) = FAST 1*DELTA1;
4(* 2,1,0,0 *),  6(* 2,2,0,0 *) = 3*(2-1)*LAMBDA;
4(* 2,1,0,0 *),  2(* 2,1,0,1 DEATH  *)= 2*(1)*LAMBDA;
5(* 1,0,2,0 *),  7(* 1,1,2,0 *) = 3*(1-0)*LAMBDA;
6(* 2,2,0,0 *),  7(* 1,1,2,0 *) = FAST 2*DELTA1;
6(* 2,2,0,0 *),  2(* 2,2,0,1 DEATH  *)= 2*(2)*LAMBDA;
7(* 1,1,2,0 *),  8(* 1,0,1,0 *) = FAST 1*DELTA2;
7(* 1,1,2,0 *),  1(* 1,1,2,1 DEATH  *)= 2*(1)*LAMBDA;
8(* 1,0,1,0 *),  9(* 1,1,1,0 *) = 3*(1-0)*LAMBDA;
9(* 1,1,1,0 *), 10(* 1,0,0,0 *) = FAST 1*DELTA2;
9(* 1,1,1,0 *),  1(* 1,1,1,1 DEATH  *)= 2*(1)*LAMBDA;

10(* 1,0,0,0 *), 11(* 1,1,0,0 *) = 3*(1-0)*LAMBDA;
11(* 1,1,0,0 *),  1(* 1,1,0,1 DEATH  *)= 2*(1)*LAMBDA;

(* NUMBER OF STATES IN MODEL = 11 *)
(* NUMBER OF TRANSITIONS IN MODEL = 14 *)
(* 5 DEATH STATES AGGREGATED INTO STATES 1 - 2 *)

The trimmed model ofN triads analyzed can be generated by using the following ASSIST input file:

LAMBDA = 1e-4;
DELTA1 = 1e4;
DELTA2 = 1e4;
INPUT NI,MNT;    (* Number triads initially, number needed *)
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TIME = 1000;

SPACE = (NAT: 0..NI,    (* Number of Active Triads *)

         NTWF: 0..NI,   (* Number of Triads with 1 fault *)

         NS: 0..NI*3,   (* Number of Available Spares *)

         NCF: 0..1);    (* 1 iff near-coincident failure *)

START = (NI,0,0,0);

IF NAT> 0 THEN

   IF (NAT > NTWF) AND (NTWF=0) TRANTO NTWF = NTWF + 1 BY 3*
      (NAT-NTWF)*LAMBDA;

   IF NTWF > 0 TRANTO NCF = 1 BY 2*(NTWF)*LAMBDA;

   IF (NTWF > 0) AND (NTWF <= MAXNTF) THEN

      IF NS > 0 THEN

         TRANTO NTWF = NTWF - 1, NS = NS - 1 BY FAST NTWF*DELTA2;

      ELSE

         IF NAT > MNT TRANTO NAT = NAT - 1, NTWF = NTWF - 1, NS = NS + 2

                                 BY FAST NTWF*DELTA1;

      ENDIF;

   ENDIF;

ENDIF;

DEATHIF (NAT=MNT) AND NCF=1;

DEATHIF NCF = 1;

This model differs from the previous model in this section by the use of an additional test on the
fault-arrivalTRANTO rule:

IF (NAT > NTWF) AND (NTWF=0) TRANTO NTWF = NTWF + 1 BY 3*(NAT-NTWF)*LAMBDA;

Note, this rule only applies whenNTWF = 0 , that is, when the number of triads with faults is 0.  As
before, the trimmed model does not have any failure transitions exiting from a recovery state that does
not end in a failure state.  The results for a system withNI = 10  andMNT = 1  are shown in table 3.

Thus, for this model, the trimming method yields a result that is significantly nonconservative (the
exact value is four times larger than the trimmed value).  The nonconservatism grows as the mission
time is increased.  The results for a 2000 hr mission are given in table 4.

Table 3. Pf  Estimated by PAWS for One Triad With Ten

Initial Spares at 1000 hr,λ = 10−4/hr, andδ = 104/hr

Model Pf

Full model 2.15× 10−7

Trimmed model 5.53× 10−8

Table 4. Pf  Estimated by PAWS for State (10,1) at 2000 hr,

λ = 10−4/hr, andδ = 104/hr

Model Pf

Full model 6.62× 10−7

Trimmed model 1.05× 10−7
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The error resulting from the trimming method can be shown to be negligible for many systems.
Thus, this technique can be used successfully if the probability contribution from all removed transi-
tions is assured to be insignificant.  This insignificance can be determined by performing some addi-
tional hand calculations (refs. 24 and 25) or by using the ASSIST implementation of this technique
discussed in section 14.3. Clearly, optimistic models such as this one must be used with caution. Fortu-
nately, the ASSIST program performs trimming in a manner that guarantees a conservative result.

14.3. ASSIST Trimming

The trimming method implemented in ASSIST for reducing the size of semi-Markov reliability
models was developed by Allan White and Daniel Palumbo of Langley Research Center. The details of
this trimming method and the theorem establishing that this method is conservative are given in refer-
ences 24 and 25. Either of these references can be used to determine the characteristics of systems for
which this trimming method is guaranteed to be conservative. Not all systems can be trimmed.
However, if used correctly, the ASSIST implementation of trimming guarantees that the result is
conservative.

In the implementation of ASSIST, the user has three choices.  First, the default is no trimming
(TRIM = 0;) . The second choice is conservative trimming of noncritically coupled failure transi-
tions(TRIM = 1;) .  In this mode, the model is altered so that each state in which the system is expe-
riencing a recovery has all failure transitions from it that  do not go immediately to a death state go to an
intermediate trim state. That intermediate trim state transitions to a final state at rateTRIMOMEGA.  This
mode is invoked by including the statementTRIM = 1 WITH real  wherereal  is some real num-
ber.  For example,

TRIM = 1 WITH 6e-4;

The expressionWITH real  is optional.  If this expression is not included, the user will be
prompted for the value.  In that case, the user is requested to type in the value followed by a semicolon.
A constant in ASSIST,TRIMOMEGA, will then be set to whatever value was specified by the user.
Proper setting ofTRIMOMEGA is discussed below.

The justification for trimming(TRIM = 1)  is as follows. In a typical reconfigurable system,
when a component fails, the system goes into a recovery state in which it is vulnerable to near-coinci-
dent failures until that failed component is removed from the active configuration.  While in that recov-
ery state, a component that is not critically coupled could fail and the system could go into a state in
which it is recovering from two simultaneous, but noncritically coupled, component failures.

Because of the combinatorics inherent in semi-Markov modeling, accurately modeling these highly
improbable states and transitions adds significant size and complexity to the model.  Trimming allows
the user to automatically replace these complex parts of the model with a few simple transitions that are
conservative approximations. For each recovery state, all failure (slow) transitions that do not go
directly to a death state, go to an intermediate state.  Because this intermediate state represents the sys-
tem experiencing two noncritically coupled component failures, an additional component failure is
assumed to cause system failure.  For simplicity,  any component failure from this intermediate state is
conservatively assumed to lead to immediate system failure.  Thus, a single transition leaves this state
and goes to an absorbing state.The rate for this transitionTRIMOMEGA must be conservatively set to the
sum of all component failure rates in the system.  Trimming will not be valid for a system in which
some recovery (fast) transitions from the trimmed states might lead to system failure because these
behaviors will not be modeled.  Also,TRIMOMEGA must be set to conservatively cover the sum of all
component failure rates, even if these rates change over the model.  For systems with unusual behaviors,
see reference 25 to determine if this method is valid for  a particular system.
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The third choice is similar toTRIM = 1; however, extra transitions are added. In particular, from
each prune state an additional transition at rateTRIMOMEGA is generated. This mode,TRIM = 2 is
invoked similarly to the case ofTRIM = 1, with TRIMOMEGA specified in the same manner.

The justification for the method ofTRIM = 2 is that each prune state of the model is not actually a
death state of the system, but a conservative approximation. Another failure of some component must
occur before system failure can occur. The feature ofTRIM = 2 simply includes this extra failure tran-
sition before pruning the model.  ForTRIM = 2 to be guaranteed conservative, the same assumptions
must hold as forTRIM = 1. Namely, no recovery (fast) transitions can lead directly to system failure
andTRIMOMEGA must be greater than or equal to the sum of the failure rates for all components still in
the system when any prune state is reached.

14.4. Trimming Example

Trimming with a model of a system of up to three independent triads, where the user is prompted
for the number of triads will be illustrated.  For convenience,  array state-space variables will be used to
model the failure behavior of the triads, and  the concatenation feature will be used to allow the triads to
have different failure rates. Although the user is prompted for the number of triads, only three or fewer
triads can be modeled because failure and recovery rates have only been defined for the first three triads.
This model is, of course, easily expandable to accommodate a larger number of triads.

INPUT N_TRIADS;       (* Number of triads initially *)

LAMBDA1 = 1E-4;       (* Failure rate of active processors in 1 *)
DELTA1 = 3.6E3;       (* Reconfiguration rate in 1 *)
LAMBDA2 = 1E-4;       (* Failure rate of active processors in 2 *)
DELTA2 = 3.6E3;       (* Reconfiguration rate in 2 *)
LAMBDA3 = 1E-4;       (* Failure rate of active processors in 3 *)
DELTA3 = 3.6E3;       (* Reconfiguration rate in 3 *)

SPACE = (NP: ARRAY[1..N_TRIADS] OF 0..3,  (* Num. active processors in triad *)
         NFP: ARRAY[1..N_TRIADS] Of 0..3); (* Num. failed active procs *)

START = (N_TRIADS OF 3, N_TRIADS OF 0);

FOR J = 1, N_TRIADS;
   IF NP[J] > NFP[J] TRANTO NFP[J] = NFP[J]+1
        BY (NP[J]-NFP[J])*LAMBDA^J;  (* Active processor failure *)

   IF NFP[J] > 0 TRANTO
        NP[J]=1, NFP[J]=0 BY FAST DELTA^J;

   DEATHIF 2 * NFP[J] >= NP[J];
     (* Two faults in an active triad or simplex with a fault *)
ENDFOR;

Two state-space variables exist:

1. NP[i] , number of active processors in subsystemi

2. NFP[i] , number of faulty processors in triadi

Because reconfiguration collapses a triad to a simplex,NP[i]  must be either 3 or 1.  Processor fail-
ure in triadi results in the increment ofNFP[i] .  TheDEATHIF condition covers both the triplex and
simplex situation.

The generated model for two triads is

N_TRIADS = 2;
LAMBDA1 = 1E-4;
DELTA1 = 3.6E3;
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LAMBDA2 = 1E-4;
DELTA2 = 3.6E3;
LAMBDA3 = 1E-4;
DELTA3 = 3.6E3;
     2(* 3,3,0,0 *),     3(* 3,3,1,0 *)        = (3-0)*LAMBDA1;
     2(* 3,3,0,0 *),     4(* 3,3,0,1 *)        = (3-0)*LAMBDA2;
     3(* 3,3,1,0 *),     5(* 1,3,0,0 *)        = FAST DELTA1;
     3(* 3,3,1,0 *),     1(* 3,3,2,0 DEATH  *) = (3-1)*LAMBDA1;
     3(* 3,3,1,0 *),     6(* 3,3,1,1 *)        = (3-0)*LAMBDA2;
     4(* 3,3,0,1 *),     7(* 3,1,0,0 *)        = FAST DELTA2;
     4(* 3,3,0,1 *),     6(* 3,3,1,1 *)        = (3-0)*LAMBDA1;
     4(* 3,3,0,1 *),     1(* 3,3,0,2 DEATH  *) = (3-1)*LAMBDA2;
     5(* 1,3,0,0 *),     1(* 1,3,1,0 DEATH  *) = (1-0)*LAMBDA1;
     5(* 1,3,0,0 *),     8(* 1,3,0,1 *)        = (3-0)*LAMBDA2;
     6(* 3,3,1,1 *),     8(* 1,3,0,1 *)        = FAST DELTA1;
     6(* 3,3,1,1 *),     9(* 3,1,1,0 *)        = FAST DELTA2;
     6(* 3,3,1,1 *),     1(* 3,3,2,1 DEATH  *) = (3-1)*LAMBDA1;
     6(* 3,3,1,1 *),     1(* 3,3,1,2 DEATH  *) = (3-1)*LAMBDA2;
     7(* 3,1,0,0 *),     9(* 3,1,1,0 *)        = (3-0)*LAMBDA1;
     7(* 3,1,0,0 *),     1(* 3,1,0,1 DEATH  *) = (1-0)*LAMBDA2;
     8(* 1,3,0,1 *),    10(* 1,1,0,0 *)        = FAST DELTA2;
     8(* 1,3,0,1 *),     1(* 1,3,1,1 DEATH  *) = (1-0)*LAMBDA1;
     8(* 1,3,0,1 *),     1(* 1,3,0,2 DEATH  *) = (3-1)*LAMBDA2;
     9(* 3,1,1,0 *),    10(* 1,1,0,0 *)        = FAST DELTA1;
     9(* 3,1,1,0 *),     1(* 3,1,2,0 DEATH  *) = (3-1)*LAMBDA1;
     9(* 3,1,1,0 *),     1(* 3,1,1,1 DEATH  *) = (1-0)*LAMBDA2;
    10(* 1,1,0,0 *),     1(* 1,1,1,0 DEATH  *) = (1-0)*LAMBDA1;
    10(* 1,1,0,0 *),     1(* 1,1,0,1 DEATH  *) = (1-0)*LAMBDA2;

(* NUMBER OF STATES IN MODEL = 10 *)
(* NUMBER OF TRANSITIONS IN MODEL = 24 *)
(* 12 DEATH STATES AGGREGATED INTO STATE 1 *)

This model is shown in figure 48.

To use trimming,  the following two lines are added:

MAX_LAMBDA = 1E-4;
TRIM=1 WITH 3*N_TRIADS*MAX_LAMBDA;

The resulting ASSIST model is

INPUT N_TRIADS;       (* Number of triads initially *)
LAMBDA1 = 1E-4;       (* Failure rate of active processors in 1 *)
DELTA1 = 3.6E3;       (* Reconfiguration rate in 1 *)
LAMBDA2 = 1E-4;       (* Failure rate of active processors in 2 *)
DELTA2 = 3.6E3;       (* Reconfiguration rate in 2 *)
LAMBDA3 = 1E-4;       (* Failure rate of active processors in 3 *)
DELTA3 = 3.6E3;       (* Reconfiguration rate in 3 *)

MAX_LAMBDA = 1E-4

TRIM=1 WITH 3*N_TRIADS*MAX_LAMBDA;

SPACE = (NP: ARRAY[1..N_TRIADS] OF 0..3,  (* Num. active processors in triad *)
         NFP: ARRAY[1..N_TRIADS] Of 0..3); (* Num. failed active procs *)

START = (N_TRIADS OF 3, N_TRIADS OF 0);

FOR J = 1, N_TRIADS;
   IF NP[J] > NFP[J] TRANTO NFP[J] = NFP[J]+1
     BY (NP[J]-NFP[J])*LAMBDA^J;  (* Active processor failure *)
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  IF NFP[J] > 0 TRANTO
     NP[J]=1, NFP[J]=0 BY FAST DELTA^J;

  DEATHIF 2 * NFP[J] >= NP[J];
    (* Two faults in an active triad or simplex with a fault *)
ENDFOR;

 The following model is generated forN_TRIADS = 2 :

N_TRIADS = 2;
LAMBDA1 = 1E-4;
DELTA1 = 3.6E3;
LAMBDA2 = 1E-4;
DELTA2 = 3.6E3;
LAMBDA3 = 1E-4;
DELTA3 = 3.6E3;
MAX_LAMBDA = 1E-4;
TRIMOMEGA = 3*N_TRIADS*MAX_LAMBDA;
PRUNESTATES = 2;

Figure 48.  Two triads.
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    4(* 3,3,0,0 *),     5(* 3,3,1,0 *)        = (3-0)*LAMBDA1;
    4(* 3,3,0,0 *),     6(* 3,3,0,1 *)        = (3-0)*LAMBDA2;
    5(* 3,3,1,0 *),     7(* 1,3,0,0 *)        = FAST DELTA1;
    5(* 3,3,1,0 *),     1(* 3,3,2,0 DEATH  *) = (3-1)*LAMBDA1;
    5(* 3,3,1,0 *),     3(* 3,3,1,1 TRIM   *) = (3-0)*LAMBDA2;
    6(* 3,3,0,1 *),     8(* 3,1,0,0 *)        = FAST DELTA2;
    6(* 3,3,0,1 *),     3(* 3,3,1,1 TRIM   *) = (3-0)*LAMBDA1;
    6(* 3,3,0,1 *),     1(* 3,3,0,2 DEATH  *) = (3-1)*LAMBDA2;
    7(* 1,3,0,0 *),     1(* 1,3,1,0 DEATH  *) = (1-0)*LAMBDA1;
    7(* 1,3,0,0 *),     9(* 1,3,0,1 *)        = (3-0)*LAMBDA2;
    8(* 3,1,0,0 *),    10(* 3,1,1,0 *)        = (3-0)*LAMBDA1;
    8(* 3,1,0,0 *),     1(* 3,1,0,1 DEATH  *) = (1-0)*LAMBDA2;
    9(* 1,3,0,1 *),    11(* 1,1,0,0 *)        = FAST DELTA2;
    9(* 1,3,0,1 *),     1(* 1,3,1,1 DEATH  *) = (1-0)*LAMBDA1;
    9(* 1,3,0,1 *),     1(* 1,3,0,2 DEATH  *) = (3-1)*LAMBDA2;
   10(* 3,1,1,0 *),    11(* 1,1,0,0 *)        = FAST DELTA1;
   10(* 3,1,1,0 *),     1(* 3,1,2,0 DEATH  *) = (3-1)*LAMBDA1;
   10(* 3,1,1,0 *),     1(* 3,1,1,1 DEATH  *) = (1-0)*LAMBDA2;
   11(* 1,1,0,0 *),     1(* 1,1,1,0 DEATH  *) = (1-0)*LAMBDA1;
   11(* 1,1,0,0 *),     1(* 1,1,0,1 DEATH  *) = (1-0)*LAMBDA2;
    3(*  TRIM   *),     2(*  TRIM.D *) = TRIMOMEGA;

(* NUMBER OF STATES IN MODEL = 11 *)
(* NUMBER OF TRANSITIONS IN MODEL = 21 *)
(* 10 DEATH STATES AGGREGATED INTO STATE 1 *)
(* 2 TRIMMED TRANSITIONS AGGREGATED INTO STATE 3 *)

This model is displayed in figure 49.

The result of solving the two-triad model with and without trimming follows:

air58% sure

  SURE V7.9.8   NASA Langley Research Center

  1? read0 nt

       0.03 SECS. TO READ MODEL FILE
 41? list=2
 42? run

 MODEL FILE = nt.mod                    SURE V7.9.8 15 Apr 94  10:03:07

 DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS             RUN #1
 ----------   -----------   -----------    ---------------------------
      1       2.98539e-06   3.00633e-06

 TOTAL        2.98539e-06   3.00633e-06

  32 PATH(S) TO DEATH STATES

 0.017 SECS. CPU TIME UTILIZED
 43? read0 nt-trim

       0.03 SECS. TO READ MODEL FILE
 84? list=2
 85? run
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 MODEL FILE = nt-trim.mod               SURE V7.9.8 15 Apr 94  10:03:23

 DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS           RUN #2
 ----------   -----------   -----------    ---------------------------
      1       2.98539e-06   3.00633e-06
              -----------   -----------
   SUBTOTAL   2.98539e-06   3.00633e-06

 PRUNESTATE    LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
 prune   2    1.46089e-12   1.50000e-12
              -----------   -----------
   SUBTOTAL   1.46089e-12   1.50000e-12
 TOTAL        2.98539e-06   3.00633e-06

  14 PATH(S) TO DEATH STATES

 0.017 SECS. CPU TIME UTILIZED
 86? orprob

Figure 49.  Two triads trimmed by ASSIST.

3λ1
3300 3310

2λ1
3320

3λ2 3λ2

3λ1
3301 3311

TRIMOMEGA

TRIM.D2λ2

3302

3λ1
3100 3110

2λ1
3120

λ2 λ2

3101 3111

1300
λ1

1310

3λ2

1301
λ1

1311

2λ2

1302

1100
λ1

1110

λ2

1101

δ2

δ1

δ2

δ1



94

 MODEL FILE = nt-trim.mod               SURE V7.9.8 15 Apr 94  10:03:34

    RUN #      LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
     1        2.98539e-06   3.00633e-06
     2        2.98539e-06   3.00633e-06
 ----------   -----------   -----------
  OR PROB =   5.97078e-06   6.01266e-06

 87? exit

As can be seen, the results are the same. For two triads, the computation times are also very close.
However, for larger configurations, the savings due to trimming can be substantial. An ASSIST/SURE
session solving a similar model forN_TRIADS = 10  with and without trimming follows:

$ assist nt
ASSIST VERSION 7.1                          NASA Langley Research Center
N_TRIADS? 10

PARSING TIME = 0.33 sec.
generating SURE model file...

787200 transitions processed.
RULE GENERATION TIME = 1941.87 sec.
NUMBER OF STATES IN MODEL = 59050
NUMBER OF TRANSITIONS IN MODEL = 787320
393660 DEATH STATES AGGREGATED INTO STATE 1

$ assist nt-trim
ASSIST VERSION 7.1                          NASA Langley Research Center
N_TRIADS? 10

PARSING TIME = 0.44 sec.
generating SURE model file...

66400 transitions processed.
RULE GENERATION TIME = 379.30 sec.
NUMBER OF STATES IN MODEL = 6147
NUMBER OF TRANSITIONS IN MODEL = 66561
33280 DEATH STATES AGGREGATED INTO STATE 1
23040 TRIMMED TRANSITIONS AGGREGATED INTO STATE 3

Substantial savings can be realized by trimming.  The model generation time has been reduced from
1941 sec to 379 sec.  The SURE solution times are similarly reduced:

$ sure

  SURE V7.9.3   NASA Langley Research Center

  1? read0 nt

    2081.90 SECS. TO READ MODEL FILE

2361989? run

 MODEL FILE = nt.mod                     SURE V7.9.3 12 Feb 92  15:34:32
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                LOWERBOUND    UPPERBOUND    COMMENT              RUN #1
 -----------   -----------   -----------    --------------------------
                1.49226e-05   1.52747e-05    <prune 5.5e-10>
 87968 PATH(S) TO DEATH STATES 119932 PATH(S) PRUNED
 HIGHEST PRUNE LEVEL =  5.14253e-13
 39.716 SECS. CPU TIME UTILIZED
2361990? exit

$ sure

  SURE V7.9.3   NASA Langley Research Center

  1? read0 nt-trim

    PRUNE STATES ARE: 2

      178.73 SECS. TO READ MODEL FILE
199715? run

 MODEL FILE = nt-trim.mod               SURE V7.9.3 12 Feb 92  12:12:18

 DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS             RUN #1
 ----------   -----------   -----------    ---------------------------
      1       1.49226e-05   1.52741e-05
 sure prune   0.00000e+00   1.72755e-08
              -----------   -----------
   SUBTOTAL   1.49226e-05   1.52741e-05

 PRUNESTATE    LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
 prune   2    3.23486e-10   3.37530e-10
              -----------   -----------
   SUBTOTAL   3.23486e-10   3.37530e-10

  TOTAL        1.49226e-05   1.52917e-05

  4836 PATH(S) TO DEATH STATES, 10830 PATH(S) PRUNED
  HIGHEST PRUNE LEVEL =  2.75830e-11

 2.683 SECS. CPU TIME UTILIZED
199716? exit

As can be seen, most of the time was spent reading in the model. Because the trimmed model is
much smaller, the execution time is likewise much smaller—less than 3 min rather than 34 min. A very
slight increase is seen in the separation of the bounds. The upper bound is1.529e-05  rather than
1.527e-05 .  However, this difference is clearly a very small price to pay for the dramatic decrease in
execution time.

15. Transient and Intermittent Faults

Computer systems are susceptible to transient and intermittent faults, as well as permanent faults.
Transient faults are faults that cause erroneous behavior for a short period of time and then disappear.
Intermittent faults are permanent faults that periodically exhibit erroneous behavior then correct behav-
ior. Transient faults can corrupt the state (i.e., memory) of an otherwise good processor. Unless the state
of the processor is recovered, the impact can be as damaging as a permanent fault. Transient faults can
also confuse a reconfigurable system. If the system improperly diagnoses a transient fault as a
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permanent fault, then a good processor is unnecessarily eliminated from the active configuration.
Because  transient faults tend to occur more frequently than permanent faults, this can have a significant
impact on the probability of system failure.  Intermittent faults can deceive the operating system into
diagnosing the fault as transient rather than permanent. Therefore, a processor experiencing an intermit-
tent fault may be left in operation much longer than a permanent fault or may be repeatedly removed,
restarted, and returned to operation. Thus, intermittent faults make the system vulnerable to near-
coincident faults for a much longer time than a permanent fault, and also may increase the fault manage-
ment overhead enough to degrade performance. Clearly a properly designed system must deal effec-
tively with these faults.  Furthermore, the assessment of such systems depends upon careful modeling of
these faults.

15.1. Transient Fault Behavior

A transient fault may or may not generate errors that are detectable by the voters of the operating
system.  The following two timing graphs illustrate the two possible effects of a single transient fault:

wheres is time of fault arrival,ei is time of detection of theith error (1 <i < n), rt is time operating sys-
tem reconfigures,Z is en − s, andR is rt − s.

These two cases represent the outcome of two competing processes—the disappearance of the
transient fault and its effects and the reconfiguration process of the operating system.  In the first case, Z
is a random variable, which represents the duration of transient errors given that reconfiguration does
not occur, andR is a random variable, which represents the reconfiguration time given that reconfigura-
tion does occur.  LetFR(r) represent the distribution of the reconfiguration time given that the system
reconfigures.

(1)

Let FZ(z) represent the distribution of the time for the disappearance of the transient error, given
that reconfiguration does not occur.

(2)

Case 1; reconfiguration does not occur.

Case 2; reconfiguration occurs.

s e1 e2 e3 e4 e5 e6 en = z

Z

t

s e1 e2 e3 e4 e5 e6 en

R

rt

t

FR r( ) Prob R r<[ ]=

FZ z( ) Prob Z z<[ ]=
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The first distributionFR can be directly observed.  The second distributionFZ is more troublesome
to determine because a fault produces errors that may persist long after the fault has actually disap-
peared. Sometimes the errors disappear quickly, sometimes they do not. The exact time when the last
error has disappeared is not directly observable.  However, determination of a worst-case result is often
possible.  This maximum time of disappearance can sometimes be derived from the operating system
code.  This follows from the fact that the operating system is responsible for the recovery from the tran-
sient fault.  If the operating system does not perform a  state-restoration process periodically, a transient
fault can be as damaging as a permanent fault.  For example, an alpha particle may flip a bit in memory.
If this memory is not rewritten, the error will persist indefinitely.  Therefore, the fault-tolerant operating
system must periodically rewrite volatile memory with voted versions of the state.

15.2. Modeling Transient Faults

Techniques for modeling various systems with transient faults will be detailed in this section.

15.2.1. Degradable triad subject to transient faults.In this section, modeling a triplex system that is
subject to transient faults will be investigated.  First, a failure rateγ must be determined for transient
faults (the rate of transient fault arrivals). Oftenγ is assumed to be 10 times the permanent fault rateλ
(ref. 6).  This system will be assumed to have been designed so that it can recover from transient faults.
Otherwise, transient faults are as damaging as permanent faults and should be modeled as permanent
faults.

This recovery is accomplished by periodically voting all volatile internal states of the processor.
Each nonfaulty processor rewrites each data value of its internal state with a voted value. Let ISVP
equal the period during which the operating system replaces the entire volatile state with voted values.
The active duration of a transient fault is assumed to be small in comparison to ISVP. Assuming that the
time from the fault arrival to the operating system update is uniformly distributed, the mean is ISVP/2
and the standard deviation is ISVP/ . Of course, the actual mean and standard deviation should be
experimentally measured.  The values of these parameters would depend strongly upon the strategy of
transient recovery that is used by the operating system.

During the period of time from the arrival of a transient fault until the system can recover, the sys-
tem is vulnerable to near-coincident failures.  If a second processor experiences a transient or permanent
fault while transient errors are present, then the three-way voter can no longer mask the faults.  Such a
state is a system failure state.  In figure 50, a model of a degradable triad system subject to only transient
faults is shown.

The corresponding SURE model is

 GAMMA = 1E-4;          (* Arrival rate for transient faults *)
  MU1 = 2.7E-4;          (* Mean reconfiguration time *)
  SIGMA1 = 1.3E-4;       (* Standard deviation of reconfiguration time *)
  ISVP = 1E-3;           (* Mean Internal State Voting Period *)
  PROB_RECONF = .1;      (* Probability of reconfiguring out transient fault *)

Figure 50.  Degradable triad subject to transient faults.
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  1,2 = 3*GAMMA;
  2,3 = 2*GAMMA;
  2,4 = <MU1,SIGMA1,PROB_RECONF>;
  2,1 = <ISVP/2,ISVP/(2*SQRT(3)),1-PROB_RECONF>;
  4,5 = GAMMA;

The transition labeledFz represents the disappearance of a transient fault and the removal of all
errors produced by it.  The transition labeledFr represents the improper reconfiguration of the system in
the presence of a transient fault. Because two recovery transitions occur from state (2), it is necessary
with SURE that the three-parameter form of recovery must be used.  The first two parameters are the
conditional mean and standard deviation.  The third parameter is the probability that this transition suc-
ceeds over the fast transitions.  The parameterPROB_RECONF represents the probability that the recon-
figuration transition succeeds over theFz transition. Thus, the third SURE parameter forFr is
PROB_RECONF and the third SURE parameter forFz is 1 - PROB_RECONF.  An experimental pro-
cedure for measuring these parameters is described in reference 26.  The probability of failure of the
system as a function of the voting period ISVP is shown in figure 51.

15.2.2. The SURE program and loop truncation.The model in figure 50 contains a loop, that is a
path that returns to a state.  Loops can lead to infinitely long paths.  Fortunately in SURE, pruning has
been shown to be conservative, even when used on models that include loops (ref. 9).

The error due to SURE-level pruning is reported in the comments field as follows whenLIST=0
or 1.

<prune 1.2e-12>

If LIST  is set to 2 or more, the prune values are listed on a separate row as follows:

DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS            RUN #4
 ----------   -----------   -----------    ---------------------------
      1       9.19500E-12   1.00000E-11

Figure 51.  Failure probability as function of ISVP.
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   4       3.46542E-10   4.77867E-10

 sure prune   0.00000e+00   1.00000E-13

              -----------   -----------

   SUBTOTAL   3.475645-10   4.87797E-10

The row which begins “sure prune ” reports an upper bound on the error because of pruning.  As
mentioned previously, the pruning error is added to the upper bound.  The upper bound is consequently
always an upper bound on the probability of system failure, even if pruning is too severe.  If the pruning
is too severe, then the bounds will be far apart, but valid.

Models that contain fast loops, that is, loops with only fast transitions, can cause the SURE program
to run forever unless a safety value is used.  Fast loops generate an infinite sequence of paths that do not
decrease in probability (as far as the upper bound of SURE is concerned).  Thus, the program would run
forever when only pruning is invoked.  TheTRUNC command sets the maximum number of times that
SURE will expand a loop.  The default value is 25, which will  not be  reached  in most models.  How-
ever, for models containing fast loops, this value will keep the program from running forever. The math-
ematical basis for  loop truncation in SURE is given in the appendix.

15.2.3. Nonreconfigurable system subject to transient faults.In this section, an NMR system subject
to both transient as well as permanent faults will be analyzed. The motivation for this example is the
RCP (Reliable Computing Platform) architecture developed at Langley Research Center (ref. 27). The
RCP utilizes NMR-style redundancy to mask faults and internal majority voting to flush the effects of
transient faults. A major goal of this work is to provide the system with significant capability to with-
stand the transient effects of High Intensity Radiated Fields (HIRF). For simplicity, a quadraplex ver-
sion of the RCP system shown in figure 52 will be examined first.

These faults arrive at rateλT for transient faults andλp for permanent faults. The transient fault and
all errors produced by it can be removed by voting the internal state. This removal is sometimes referred
to as transient fault scrubbing. In the RCP system, this scrubbing takes place continuously and does not
rely upon the system detecting the transient fault.  The presence of the transition from state (2) to
state (1) depends upon the proper design of the operating system and is necessary so that a system can
recover the state of a processor that has been affected by a transient fault. To simplify this discussion,
the arrival of a second transient fault on the same processor before the disappearance of the first

Figure 52.  Reliability model of quadraplex RCP.
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transient fault has not been included in the model. The model has six states of which three are opera-
tional.  State (1) represents the initial fault-free state of the system.  Only two transitions from state (1)
result from the arrival of either a transient or permanent fault.  These transitions carry the system into
states (2) and (4), both of which are not system failure states.  This property has been justified by a for-
mal proof that establishes that for a quadraplex RCP, no single fault can cause the system to produce an
erroneous majority output.  All transitions except one from these states are  caused by second failures.
These second failures lead to system failure states.  The other transition from state (2) back to state (1)
models the transient fault scrubbing process.  A formal proof justifying the inclusion of this transition
has been developed that demonstrates that the RCP system removes the effects of a transient fault
within a bounded amount of time (ref. 27).

The probability of system failure as a function of 1/ρ, the rate of recovering the state, is shown in
figure 53. The model was solved by using the STEM reliability analysis program for the parameters of
λp = 10−4/hr, λT = 10−3/hr, and mission timeT = 10 hr (ref. 11). Because no recoveries exist in the
model, a pure Markov model solver is sufficient, although SURE could have been used if desired.

Note the validation tasks that have been eliminated by not using reconfiguration in the RCP.  First,
it is not necessary to perform fault-injection experiments to measure the recovery time distributions.
Second, fault latency is of no concern.  Fault latency is only a concern when detecting and removing a
faulty component because latency merely defers error production, and thus detection.  Third, the logical
complexity of the system is greatly reduced. No reconfiguration process is necessary and the interface to
the sensors and the actuators is static  instead of dynamic.  Hence, fewer design errors must be corrected
during the validation process.  The following ASSIST input will generate a model of the RCP for a
specified value ofN.

INPUT N;                  (* Number of processors *)
LAMBDA = 1E-4;            (* Permanent fault arrival rate *)
GAMMA = 10*LAMBDA;        (* Transient fault arrival rate *)
"FLUSHTIME = 1E-1 TO* 1E4 by 10;"

Figure 53.  Probability of failure as function of 1/ρ.
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SPACE = (NW: 0..N,            (* Number of working processors *)
NFP: 0..N,                    (* Active procs. with permanent faults *)
NFT: 0..N);                   (* Active procs. with transient faults *)

START = (N, 0, 0);
DEATHIF NFP+NFT >= NW;  (* Majority of active processors failed *)

IF NW>0 THEN
   TRANTO NW = NW-1, NFP = NFP+1 BY NW*LAMBDA; (* Permanent fault arrival *)
   TRANTO NW = NW-1, NFT= NFT+1 BY NW*GAMMA;   (* Transient fault arrival *)

ENDIF;

IF NFT > 0 THEN
   TRANTO NFP = NFP+1, NFT = NFT-1 BY NFT*LAMBDA;  (* transient -> permanent *)
   TRANTO NW=NW+1, NFT = NFT-1 BY FAST 1/FLUSHTIME;
      (* Transient fault disappearance *)
ENDIF;

The model has twoTRANTO rules that generate fault-arrival transitions—oneTRANTO rule gener-
ates permanent fault-arrival transitions and oneTRANTO rule generates transient fault-arrival transi-
tions.  AnotherTRANTO rule generates transitions corresponding to flushing of the effects of a transient
fault. Note that  this rule incrementsNW, as well as decrementingNFT. AnotherTRANTOrule covers  a
transiently faulted processor that fails permanently.  A processor that has been upset by a transient phe-
nomena is not immune to a permanent failure. TheDEATHIF statement sums the number of transiently
and permanently faulted processors and the result is compared with the number of working processors.

The probability of system failure as a function ofρ (1/FLUSHTIME) is given for theN = 3, 5,
and 7  processor configurations in figure 54.

Note that the inflection point of the curve does not vary significantly with variation inN.

Figure 54.  Probability of failure as function ofρ.
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15.3. Degradable Quadraplex Subject to Transient and Permanent Faults

Because transient faults tend to occur at a faster rate than permanent faults, many systems are
designed to tolerate transient faults that disappear after a short amount of time.  Because fewer proces-
sors are needlessly reconfigured, this design can significantly reduce the number of spare components
needed.  However, the operating system must be able to distinguish between transient faults and perma-
nent faults. Typically, a simple algorithm is used by the operating system to distinguish the two types of
faults.  Because this algorithm is not foolproof, a transition in the model that represents the operating
system incorrectly reconfiguring in the presence of a transient fault must be included.

In the SIFT system, significant consideration was given to this problem.  The operating system is
faced with conflicting goals.  If the fault is permanent, the system needs to reconfigure as quickly as
possible.  If the fault is transient, then the system should not reconfigure.  Typically, the operating sys-
tem delays the reconfiguration process temporarily to see  whether the fault will disappear.  Clearly, the
amount of time the operating system delays has a significant impact on system reliability because of the
susceptibility to near-coincident faults.  Only a minimal amount of information resides in the dynamic
(volatile) portions of system memory.  The schedule table in SIFT is static, so it could be stored in non-
volatile read-only memory (ROM). The program code can also be stored in ROM.

     The ASSIST input file for a SIFT-like system that starts with four processors is

NP = 4;                   (* Number of processors *)
LAMBDA = 1E-4;            (* Permanent fault arrival rate *)
GAMMA = 10*LAMBDA;        (* Transient fault arrival rate *)
MU = 1E-4;                (* Mean permanent fault reconfiguration time *)
STD = 2E-4;               (* Standard dev. of permanent fault reconfig. *)

MU_REC = 7.4E-5;          (* Cond. mean reconfiguration time for transient fault *)
STD_REC = 8.5E-5;         (* Cond. standard deviation of transient reconfiguration *)
P_REC = .10;              (* Probability system reconfigures out a transient *)
"ISVP = 1E-2;"            (* Period of system rewrite of internal state *)
"MU_DISAPPEAR = ISVP/2;"             (* Cond. mean time to transient disappearance *)
"STD_DISAPPEAR = ISVP/(2*SQRT(3));"  (* Cond. stan. dev. of disappearance time *)

SPACE = (NW: 0..NP,            (* Number of working processors *)
         NFP: 0..NP,           (* Active procs. with permanent faults *)
         NFT: 0..NP);          (* Active procs. with transient faults *)
START = (NP, 0, 0);

DEATHIF NFP+NFT >= NW;  (* Majority of active processors failed *)

IF NW>0 THEN
   TRANTO (NW-1, NFP+1, NFT) BY NW*LAMBDA; (* Permanent fault arrival *)
   TRANTO (NW-1, NFP, NFT+1) BY NW*GAMMA;  (* Transient fault arrival *)
ENDIF;

IF NFT > 0 THEN
   TRANTO (NW+1, NFP, NFT-1) BY <MU_DISAPPEAR,STD_DISAPPEAR,1-P_REC> ;
      (* Transient fault disappearance *)
   TRANTO NFT = NFT-1 BY <MU_REC, STD_REC,P_REC>;
      (* Transient fault reconfiguration *)
ENDIF;

IF NFP > 0 TRANTO NFP = NFP-1 BY <MU,STD>;
   (* Permanent fault reconfiguration *)

In this model, the system does not collapse a triad to a simplex. Instead, the triad degrades to a dual.

15.4. NMR With Imperfect Recovery From Transient Faults

If a system is not designed with a foolproof capability of removing the effects of a transient fault,
the fraction of transient faultsR that are recoverable must be measured.  The effect of a nonrecoverable
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transient fault is the same as a permanent fault. Therefore, this situation can be modeled by increasing
the permanent failure rate by (1− R) times the transient fault rate for each working processor in the
system.

An ASSIST model for this situation is

INPUT NP;                 (* Number of processors *)
LAMBDA = 1E-4;            (* Permanent fault arrival rate *)
GAMMA = 10*LAMBDA;        (* Transient fault arrival rate *)
RHO = 1E2;
"R = 0 TO+ 1 BY 0.05;"

SPACE = (NW: 0..NP,            (* Number of working processors *)
         NFP: 0..NP,           (* Active procs. with permanent faults *)
         NFT: 0..NP);          (* Active procs. with transient faults *)
START = (NP, 0, 0);

DEATHIF NFP+NFT >= NW;  (* Majority of active processors failed *)

IF NW>0 THEN
    TRANTO (NW-1, NFP+1, NFT) BY NW*LAMBDA + NW*(1-R)*GAMMA;
    TRANTO (NW-1, NFP, NFT+1) BY NW*R*GAMMA;
ENDIF;

IF NFT > 0 THEN
   TRANTO (NW+1, NFP, NFT-1) BY FAST RHO; (* Transient fault disappearance *)
   TRANTO (NW,NFP+1,NFT-1) BY NFT*LAMBDA; (* Transient -> permanent *)
ENDIF;

 The four-processor case is shown in figure 55. Figure 56  shows the probability of system failure.
The effect becomes even more dramatic as the number of processors is increased as shown in figure 57.

15.5. Degradable NMR With Perfect Transient Fault Recovery

In this section, some problems with modeling degradable NMR systems that are subject to perma-
nent and transient faults are explored. The major problem is that many different situations with compet-
ing recoveries are possible. To simplify the discussion, 100 percent of the errors produced by a single
transient fault are assumed to be flushed by the operating systemR = 1. Each situation involves

Figure 55.  Markov model of imperfect transient recovery.
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different parameters, which must be experimentally measured. To illustrate the problem, a degradable
6-plex will first be considered.  If the model in section 15.3 is modified by changing the first line to

NP = 6;

the SURE program will object with the following message:

*** ERROR: SUM OF EXITING PROBABILITIES IS NOT 1 AT 12

When the generated model is examined, five transitions are found at state (12):

48:    12(* 3,1,1 *),    1(* 2,2,1 *) = 3*LAMBDA;

49:    12(* 3,1,1 *),    1(* 2,1,2 *) = 3*GAMMA;

50:    12(* 3,1,1 *),    9(* 4,1,0 *) = <MU_DISAPPEAR,STD_DISAPPEAR,1-P_REC>;

51:    12(* 3,1,1 *),   15(* 3,1,0 *) = <MU_REC,STD_REC,P_REC>;

52:    12(* 3,1,1 *),   16(* 3,0,1 *) = <MU,STD>;

Three of the five transitions are competing recoveries.  This competition occurs because two active
faults exist at state (12)—one transient and one permanent.  The three possible outcomes are

1. The permanent fault is reconfigured.

2. The transient fault is reconfigured.

3. The transient fault disappears.

The ASSIST model was originally constructed for a quadraplex system where any state with two
active faults would be a death state.  However, higher levels of redundancy result in more complexity.
There are several  solutions to this problem.  Unfortunately, the more satisfactory models are more com-
plex.  We will begin will the simplest model.

The simplest solution to the problem is to make all states with two active faults death states. This
method is used by programs that are based on the critical-pair approach such as found in CARE and
HARP (refs. 16 and 28). This method can be used with ASSIST by changing the

DEATHIF NFT + NFP >= 2;

Although this change results in a conservative answer, the solution is not satisfactory because the
model simply ignores all additional redundancy.  Overly conservative results can be obtained with this
technique.

Figure 56.  Probability of system failure as function ofR. Figure 57.  Probability of system failure as function ofR for
5MR and 7MR
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A second solution to the problem is to model all recovery transitions with exponential distributions.
The SURE program automatically determines all conditional parameters when this method is used.  The
model  is

NP = 6;                        (* Number of processors *)
LAMBDA = 1E-4;                 (* Permanent fault arrival rate *)
GAMMA = 10*LAMBDA;             (* Transient fault arrival rate *)
W = .5;                        (* Transient fault disappearance rate *)
DELTA = 3.6E3;                 (* Reconfiguration rate *)

SPACE = (NW: 0..NP,            (* Number of working processors *)
         NFP: 0..NP,           (* Active procs. with permanent faults *)
         NFT: 0..NP);          (* Active procs. with transient faults *)
START = (NP, 0, 0);

DEATHIF NFP+NFT >= NW;  (* Majority of active processors failed *)

IF NW>0 THEN
   TRANTO (NW-1, NFP+1, NFT) BY NW*LAMBDA; (* Permanent fault arrival *)
   TRANTO (NW-1, NFP, NFT+1) BY NW*GAMMA;  (* Transient fault arrival *)
ENDIF;

IF NFT > 0 THEN
   TRANTO (NW+1, NFP, NFT-1) BY FAST W;   (* Transient fault disappearance *)
   TRANTO NFT = NFT-1 BY FAST DELTA;      (* Transient fault reconfiguration *)
ENDIF;

IF NFP > 0 TRANTO NFP = NFP-1 BY FAST DELTA; (* Permanent f. reconfiguration *)

This model will work for arbitrary values ofNP.  Unfortunately, this model makes the assumption that
all  recovery distributions are exponentially distributed.

The most accurate way to model such systems is to use general recovery distributions.  This model
necessitates analysis of each situation where multiple competing recoveries occur.  For a 5-plex or a
6-plex, the following operational states with two active faults exist:

1. Two permanent faults

2. Two transient faults

3.  One transient and  one permanent fault

The conditional moments for each case must be measured experimentally.

 15.5.1. Two permanent faults in one state.Because two active permanent faults exist in a state, the
mean and the standard deviation of the time until the first recovery occurs must be measured.  Because
the two processors are identical, it is not necessary to track which processor recovers first or estimate
the moments of two conditional recovery distributions.  The parameters are

1. MU_2,  mean recovery time of the first of two competing recoveries

2. STD_2 standard deviation of the recovery time of the first of two competing recoveries

 15.5.2. Two transient faults in one state.The transient fault situation is complicated because the
transient faults may disappear rather than be reconfigured. Because of symmetry, which transient fault
disappears or is reconfigured first need not be recorded.  However, the mean and the standard deviation
of the first one to disappear or reconfigure and the ratio of times between these two outcomes must be
obtained. The parameters are

1. P_DISAPPEAR_2, probability one of the transient faults disappears before the system reconfig-
ures one of the transient faults.
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2. MU_DISAPPEAR_2,  conditional mean time of disappearance of one of two transient faults

3. STD_DISAPPEAR_2, conditional standard deviation of time of disappearance of one of two
transient faults

4. MU_REC_2, conditional mean time to reconfigure one of the transient faults before either
disappears

5. STD_REC_2, conditional standard deviation of time to reconfigure one of the transient faults
before either disappears

  15.5.3.  One transient and  one permanent fault in one state.This situation is the most complicated
because it is not symmetrical—one processor has a transient fault and the other processor has a perma-
nent fault.  Thus, the conditional means and standard deviations must be estimated for each possible
outcome:

1. The transient fault disappears before the system reconfigures either fault.

2. The system reconfigures the transient fault before it disappears or the permanent fault is
reconfigured.

3. The system reconfigures the permanent fault before the transient fault disappears or is
reconfigured.

In the design phase, these parameters would be difficult to estimate. However, after the system is
built, three histograms could be collected for each outcome and the corresponding means and standard
deviations could be computed. The parameters are

1. P_DIS_BEF2, probability the transient fault disappears before the system reconfigures either
fault

2. P_REC_TRAN,  probability the system reconfigures the transient fault before it disappears or the
permanent fault is reconfigured

3. P_REC_PERM, probability the system reconfigures the permanent fault before the transient fault
disappears or is reconfigured

4. MU_DIS_3, conditional mean time of disappearance of the transient fault given that it wins the
3-way race

5. STD_DIS_3, conditional standard deviation of the time of disappearance of the transient fault
given that it wins the 3-way race

6. MU_REC_3, conditional mean time to reconfigure the transient fault given that it wins the 3-way
race

7. STD_REC_3, conditional standard deviation of time to reconfigure the transient fault given that
it wins the 3-way race

8. MU_3, conditional mean time to reconfigure the permanent fault given that it wins the 3-way
race

9. STD_3, conditional standard deviation of time to reconfigure the permanent fault given that it
wins the 3-way race

 The complete model is

NP = 6;                   (* Number of processors *)
LAMBDA = 1E-4;            (* Permanent fault arrival rate *)
GAMMA = 10*LAMBDA;        (* Transient fault arrival rate *)

(* ------------ Constants associated with one permanent ----------- *)
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MU = 1E-4;                (* Mean permanent fault recovery time *)
STD = 2E-4;               (* Standard deviation permanent fault *)

(* ------------ Constants associated with one transient ----------- *)

MU_REC = 7.4E-5;          (* Mean reconfiguration time from transient  *)
STD_REC = 8.5E-5;         (* Standard deviation of transient reconfiguration *)
P_REC = .10;              (* Probability system reconfigures transient *)
"ISVP = 1E-2;"              (* Period of system rewrite of internal state *)
"MU_DISAPPEAR = ISVP/2;"             (* Mean time to transient disappearance *)
"STD_DISAPPEAR = ISVP/(2*SQRT(3));"  (* Stan. dev. of disappearance time *)

(* ------------ Constants associated with two transients ----------- *)

MU_REC_2 = 7.4E-5;        (* Mean reconfiguration time from transient  *)
STD_REC_2 = 8.5E-5;       (* Standard deviation of transient reconfiguration *)
P_DISAPPEAR_2 = .92;      (* Probability system reconfigures transient *)
"MU_DISAPPEAR_2 = 5E-3;"  (* Mean time to transient disappearance *)
"STD_DISAPPEAR_2 = 3E-3;" (* Stan. dev. of disappearance time *)

(* ------------ Constants associated with two permanents ----------- *)

MU_2 = 1E-4;              (* Mean permanent fault recovery time *)
STD_2 = 2E-4;             (* Standard deviation permanent fault *)

(* --- constants associated with states with a permanent and a transient --- *)

"P_DIS_BEF2 = .3;"      (* Probability the transient disappears *)
"P_REC_TRAN = .3;"      (* Probability the transient is reconfigured *)
"P_REC_PERM = 1-(P_DIS_BEF2+P_REC_TRAN);" (* Prob. permanent is reconfigured *)
"MU_DIS_3 = 1E-4;"      (* Conditional mean time of disappearance of
                          transient given that it wins the 3-way race. *)
"STD_DIS_3 = 1E-4;"     (* Conditional standard time of disappearance of
                          the transient given that it wins the 3-way race. *)
"MU_REC_3 = 1E-4;"      (* Conditional mean time to reconfigure the
                          transient given that it wins the 3-way race. *)
"STD_REC_3 = 1E-4;"     (* Conditional standard deviation of time to
                          reconfigure the transient given that it wins *)
"MU_3 = 1E-4;"          (* Conditional mean time to reconfigure the
                          permanent given that it wins. *)
"STD_3 = 1E-4;"         (* Conditional standard deviation of time
                          to reconfigure the permanent given that it wins *)

SPACE = (NW: 0..NP,            (* Number of working processors *)
         NFP: 0..NP,           (* Active procs. with permanent faults *)
         NFT: 0..NP);          (* Active procs. with transient faults *)
START = (NP, 0, 0);

DEATHIF NFP+NFT >= NW;  (* Majority of active processors failed *)

IF NW>0 THEN
   TRANTO (NW-1, NFP+1, NFT) BY NW*LAMBDA; (* Permanent fault arrival *)
   TRANTO (NW-1, NFP, NFT+1) BY NW*GAMMA;  (* Transient fault arrival *)
ENDIF;

IF NFT + NFP = 1 THEN   (* 1 active fault *)
   IF NFT > 0 THEN
      TRANTO (NW+1, NFP, NFT-1) BY <MU_DISAPPEAR,STD_DISAPPEAR,1-P_REC> ;
        (* Transient fault disappearance *)
      TRANTO NFT = NFT-1 BY <MU_REC, STD_REC,P_REC>;
         (* Transient fault reconfiguration *)
   ENDIF;

   IF NFP > 0 TRANTO NFP = NFP-1 BY <MU,STD>; (* Perm. f. reconfiguration *)
ENDIF;
IF NFP = 2      (* Case 1: Two permanents *)
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   TRANTO NFP = NFP-1 BY <MU_2,STD_2>;  (* Permanent fault reconfiguration *)
IF NFT = 2 THEN (* Case 2: Two transients *)
   TRANTO (NW+1, NFP, NFT-1)
     BY <MU_DISAPPEAR_2,STD_DISAPPEAR_2,P_DISAPPEAR_2> ;
         (* Transient fault disappearance *)
    TRANTO NFT = NFT-1 BY <MU_REC_2, STD_REC_2,1-P_DISAPPEAR_2>;
          (* Transient fault reconfiguration *)
ENDIF;

IF (NFT = 1) AND (NFP = 1) THEN   (* 1 transient and 1 permanent *)
   TRANTO (NW+1, NFP, NFT-1) (* Transient fault disappearance *)
      BY <MU_DIS_3,STD_DIS_3,P_DIS_BEF2> ;
   TRANTO NFT = NFT-1        (* Transient fault reconfiguration *)
      BY <MU_REC_3, STD_REC_3,P_REC_TRAN>;
   TRANTO NFP = NFP-1        (* Permanent fault reconfiguration *)
      BY <MU_3,STD_3,P_REC_PERM>;
ENDIF;

Obviously, a rough sensitivity analysis should be performed to determine how sensitive a system is
to transient faults before developing such a complex model and measuring so many parameters.

15.6. Fault-Tolerant Processor

The strategy used in the fault-tolerant processor (FTP) of the Charles Stark Draper Laboratory for
handling transient faults is different from that used in earlier fault-tolerant systems such as SIFT
(ref. 29).  In these systems, reconfiguration was deferred until the system was reasonably certain that the
fault was permanent.  Once a processor was removed, it was never reinstated.  In FTP, a different strat-
egy is used.  Upon the first detection of an error, the faulty processor is removed.  The system then exe-
cutes a self test on the removed processor.  If the processor passes the test, the system diagnoses the
problem as a transient fault and reinstates the processor.  If the processor fails the self-test program, the
fault is diagnosed as permanent and the processor is permanently removed.  Thus, a transient fault that
does not disappear in time will be diagnosed as permanent.

A partial model for the FTP is shown in figure 58.  In this model, each state is described by a triple
(NW,NFA,NFT) whereNW is the number of working processors,NFA is the number of faulty processors
(both transient and permanent), andNFT is the number of processors undergoing self test.

Figure 58.  Partial model of FTP.

4λ
4,0,0 3,1,0

3λ
2,2,0

Fpass

3λ
3,0,1 2,1,1

2λ
1,2,1

Ffail Ffail

3,0,0 2,1,0

Fs

Fpass

Fpass

3λ



109

The transition from state (4,0,0) to state (3,1,0) represents the failure of any processor in the config-
uration.  The transition from state (3,1,0) to state (3,0,1) represents the detection of a fault, the tempo-
rary removal of the processor from the active configuration, and the initiation of the self-test program.
If the processor passes the self test, the processor is returned to the active configuration by the transition
from state (3,0,1) back to state (4,0,0).  If the processor fails the self test, the processor is permanently
removed from the configuration.  This removal occurs in the model in the transition from state (3,0,1) to
state (3,0,0).  Note that while the self-test program is in progress (i.e., in state (3,0,1)), that a second fail-
ure does not lead to system failure.  This  situation occurs because the outputs from the removed proces-
sor are not considered in the voting, thus the majority of the outputs being voted are nonfaulty.
Therefore, state (2,1,1) is not a death state. The complete SURE model is

F_P = 1E-6 TO* 1 BY 10;
F_T = 1.0-F_P;
LAMBDA = 1E-4;
DET = 1E-7;
SIGDET = 10*DET;
TESTTIME = 1E-3;
SIGTEST = 2*TESTTIME;

     2(* 4,0,0 *),    3(* 3,1,0 *) = 4*LAMBDA;
     3(* 3,1,0 *),    1(* 2,2,0 *) = 3*LAMBDA;
     3(* 3,1,0 *),    4(* 3,0,1 *) = <DET,SIGDET>;
     4(* 3,0,1 *),    5(* 2,1,1 *) = 3*LAMBDA;
     4(* 3,0,1 *),    2(* 4,0,0 *) = <TESTTIME,SIGTEST,F_T>;
     4(* 3,0,1 *),    6(* 3,0,0 *) = <TESTTIME,SIGTEST,1-F_T>;
     5(* 2,1,1 *),    1(* 1,2,1 *) = 2*LAMBDA;
     5(* 2,1,1 *),    3(* 3,1,0 *) = <TESTTIME,SIGTEST,F_T>;
     5(* 2,1,1 *),    7(* 2,1,0 *) = <TESTTIME,SIGTEST,1-F_T>;
     6(* 3,0,0 *),    7(* 2,1,0 *) = 3*LAMBDA;
     7(* 2,1,0 *),    1(* 1,2,0 *) = 2*LAMBDA;
     7(* 2,1,0 *),    8(* 2,0,1 *) = <DET,SIGDET>;
     8(* 2,0,1 *),    1(* 1,1,1 *) = 2*LAMBDA;
     8(* 2,0,1 *),    6(* 3,0,0 *) = <TESTTIME,SIGTEST,F_T>;
     8(* 2,0,1 *),    9(* 2,0,0 *) = <TESTTIME,SIGTEST,1-F_T>;
     9(* 2,0,0 *),    1(* 1,1,0 *) = 2*LAMBDA;

This model was generated with the ASSIST input given below.

SPACE = (NW: 0..4,        (* number of working processors *)
         NFA: 0..4,       (* number of faulty active processors *)
         NFT: 0..4);      (* number of processors undergoing self test *)

START = (4,0,0);

LAMBDA = 1E-4;          (* Arrival rate of failures -- perm. or transient *)
DET = 1E-7;             (* Mean time to detect and remove proc. with fault *)
SIGDET = 10*DET;        (* Stan. dev. time to detect and remove processor *)
TESTTIME = 1E-3;        (* Mean time to execute self test *)
SIGTEST = 2*TESTTIME;   (* Stan. dev. of time to execute self test *)

"F_P = 1E-6 TO* 1 BY 10;" (* Probability failure was permanent *)
"F_T = 1.0-F_P;"          (* Probability failure was transient *)

   (* Fault arrival *)
IF NW > 0 TRANTO NW=NW-1, NFA = NFA + 1 BY NW*LAMBDA;
   (* Detection of fault and removal of processor for self test *)
IF (NFA > 0) AND (NFT = 0) TRANTO NFT=NFT+1, NFA = NFA - 1 BY <DET,SIGDET>;

IF NFT > 0 THEN
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      (* Reinstatement of processor after transient fault *)
   TRANTO NFT=NFT-1, NW = NW+1 BY <TESTTIME,SIGTEST,F_T>;
      (* Permanent removal of processor with permanent fault *)
   TRANTO NFT=NFT-1 BY <TESTTIME,SIGTEST,1-F_T>;
ENDIF;

  (* System failure occurs if majority of outputs sent to voter are faulty *)
DEATHIF NFA >= NW;

In this model, the FTP is assumed to not allow a second processor to undergo self test while a first
processor is undergoing self test. Note that theIF  expression, which governs the generation of transi-
tions that remove a processor from the active configuration for self test, isIF (NFA > 0)
AND (NFT = 0) .  The second term prevents the generation of a self-test transition when a processor
is already under self test.

Most models containing transient faults require the estimation of the disappearance rates for tran-
sient faults. Virtually no experimental values are available for this parameter because it cannot be
directly measured on operational equipment or through fault-injection experiments.

This parameter was not used explicitly in the model of the FTP system in this section.  The dis-
appearance rate of short transient faults does not matter because the FTP operating system masks all
outputs after the first erroneous output until the self test is complete.  However, if a transient fault per-
sists long enough for a processor to fail the self test, then the fault is assumed to be permanent and the
processor is permanently removed.  Thus, the true transient fault disappearance rate affects the ratio of
transient to permanent faults.  This ratio, which is unknown, can play an important part in assessing the
FTP strategy of reinstating processors.

15.7. Modeling Intermittent Faults

Before a solution technique was developed by White, the solution of semi-Markov models with
nonexponential recovery transitions was extremely difficult. To circumvent the need for a semi-Markov
model, the recovery process can be represented with a submodel of states that decompose the recovery
into a series of smaller steps. This procedure is often referred to as the method of stages.  The CARE III
single fault model is an example of the method of stages (ref. 16).  This multistep process was designed
to provide a more accurate representation of the reconfiguration process than could be obtained with a
single exponential process.  However, many of these multistep models have used parameters that are not
directly observable or measurable.  For example, while the overall time of reconfiguration is directly
observable, the individual times required to detect, isolate, and recover from a fault can be extremely
difficult to measure accurately.

A remnant of the multistep recovery model approach is the concept that separate states must be used
to represent the active and the inactive states of an intermittent fault. Therefore, models are frequently
constructed that resemble the partial model shown in figure 59. In this partial model of a triplex-simplex
system subject to intermittent faults, the states are described with a triple (NW,NFA,NFB) whereNW is
the number of working processors,NFA is the number of processors with active faults, andNFB is the
number of processors with benign faults.

 When a processor fails, the fault is initially benign.  At some rate A the fault becomes active.  At
some rate B  the active intermittent fault returns to the benign state.  While the fault is benign, no errors
are produced that would enable the system to detect the fault.  The question of whether benign faults
cause near-coincident failure must be addressed.  One conservative approach is to assume that they do
cause near-coincident failure.  In this case, intermittent faults behave identically to permanent faults
except that intermittent faults are reconfigured at a different rate than permanent faults.  If faults in the
benign state are assumed to not cause near-coincident failure, then many additional states, which con-
tain benign faults, exist in the model.  For example, states (1,0,2), (1,0,3), and (2,0,2) contain more
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faulty benign processors than good processors, yet these states are operational.  The following ASSIST
input could be used to generate the complete model for a triplex system

SPACE = (NW: 0..3,        (* Number of working processors *)
         NFA: 0..3,       (* Number of processors with active int. faults *)
         NFB: 0..3);      (* Number of processors with benign int. faults *)

START = (3,0,0);

L = 1E-4;                 (* Rate of arrival of intermittent faults *)
REC = 1E4;                (* Mean rate of reconfiguration *)
A = 1E2;                  (* Rate benign intermittent fault goes active *)
B = 1E2;                  (* Rate active intermittent fault goes benign *)

   (* Arrival of intermittent fault -- assumed to start out benign *)
IF NW > 0 TRANTO NW = NW-1, NFB = NFB + 1 BY NW*L;
   (* Benign intermittent fault becomes active *)
IF NFB > 0 TRANTO NFB = NFB - 1, NFA = NFA + 1 BY FAST A;

IF NFA > 0 THEN
      (* Active intermittent fault becomes benign *)
   TRANTO NFB = NFB + 1, NFA = NFA - 1 BY FAST B;
      (* Processor with active intermittent fault reconfigured -- 2 cases: *)
         (* Reconfigure to simplex working processor *)
   IF NW > 0 TRANTO (1,0,0) BY FAST (NW/(NW+NFB))*REC;
         (* Reconfigure to simplex with benign intermittent fault *)
   IF NFB > 0 TRANTO (0,0,1) BY FAST (NFB/(NW+NFB))*REC;
ENDIF;
  (* System failure occurs when majority of processors have active fault *)
DEATHIF NFA >= (NW+NFB);

The recovery rule generates two competing recoveries.  This rule is necessary because the operating
system makes an arbitrary choice among the processors that do not contain active faults when it
degrades to a simplex.  The probability that a processor with a benign fault becomes the remaining sim-
plex processor isNFB/(NW+NFB).

The problem with this model is that the on-off cycles of the intermittent fault must be modeled and
the associated parameters must be measured.  Realistic intermittent faults are difficult to create in the
laboratory, and the rates at which they become active and benign are difficult to measure.  Even if these
parameters could be accurately measured, a semi-Markov model may not have enough generality to

Figure 59.  Detailed intermittent fault submodel.
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accurately represent the behavior of the  oscillations between active and benign. It is preferable to inject
intermittent faults and observe the impact on the system.  The system recovery time will probably be
longer for intermittent faults than for transient faults.  The resulting model is shown in figure 60.
Although this model is considerably simpler, it can be much more accurate than the detailed model
given in figure 59 because it relies only on directly observable parameters.  Note that this method uses
the conservative approach of assuming that intermittent faults can cause near-coincident failure during
their benign phase.

The SURE program has difficulty solving models with fast loops, that is, loops containing no slow
transitions.  The SURE program can solve the model generated by the ASSIST input above.  The output
is

$ sure

 SURE V7.4   NASA Langley Research Center

 1? read0 intm

      0.20 SECS. TO READ MODEL FILE

35? run

MODEL FILE = intm.mod                    SURE V7.4 24 Jan 90   14:17:49

                LOWERBOUND    UPPERBOUND     COMMENTS          RUN #1

 -----------   -----------   -----------    --------------------------

               1.38175e-06   1.50309e-06    <prune 8.9e-13>

64 PATH(S) TO DEATH STATES 54 PATH(S) PRUNED

HIGHEST PRUNE LEVEL =  6.18304e-13

1.650 SECS. CPU TIME UTILIZED

36? exit

However for some parameter regions, the program may require large amounts of CPU time. For
example, if the value ofB is changed to1E5, the SURE program will require 3458 sec to solve the
model. AsB approaches infinity, the execution time approaches infinity. If the SURE program is unable
to solve the model in a reasonable amount of time, the PAWS or STEM programs may be used to solve
the model.  However, these programs assume that all recoveries are exponentially distributed.

16. Sequences of Reliability Models

The SURE program provides the user with the capability to calculate and store the probability of
terminating in each operational state of the model, as well as the death state probabilities.  The program
also allows the user to initialize a model by using these same operational state probabilities.  These fea-
tures support the use of sequences of reliability models to model systems with phased missions or non-
constant failure rates.

Figure 60.  Model of triplex to simplex system subject to intermittent faults.

1 2
3λ

3
2λ

F*(t)

5
λ

4



113

16.1. Phased Missions

 Many systems exhibit different failure behaviors or operational characteristics during different
phases of a mission.  For example, a spacecraft may experience considerably higher component failure
rates during lift-off than in the weightless, benign environment of space.  Also, the failure of a particular
component may be catastrophic only during a specific phase, such as the 3-min landing phase of an air-
craft.  In a phased-mission solution, a model is solved for the first phase of the mission.  The final prob-
abilities of the operational states are used to calculate the initial state probabilities for a second model.
(The second model usually differs from the first model in some manner.) This process is repeated for all
phases in the mission.

The SURE program reports upper and lower bounds on the operational states, just as for the death
states.  The bounds of the operational states are not as close as the death state bounds, but are usually
acceptable. The upper and lower bounds on recovery states (states with fast transitions leaving them) are
usually not very close together. Fortunately, recovery states usually have operational bounds that are
several orders of magnitude lower than the other states in the model because systems typically spend a
very small percentage of their operational time performing recoveries. Thus, the crudeness of the
bounds for the recovery states in early phases does not lead to an excessive separation of the final death
state bounds. In other words, the crude operational recovery state probabilities will usually result in only
a small separation of the final bounds obtained in phased-mission calculations.  Although the bounds
may sometimes be unacceptably far apart, they will always be mathematically correct.

Suppose we have a system that operates in two basic phases—cruise and landing. The system is
implemented with a triad of processors and two warm spares.  For simplicity, perfect detection of spare
failure is assumed.  During the cruise phase, which lasts for 2 hr, the system reconfigures by sparing and
degradation.  After the cruise phase, the system goes into a landing phase, which lasts 3 min.  During
the landing phase, the workload on the machines is so high that the additional processing that would be
needed to perform reconfiguration cannot be tolerated.  Therefore, the system is designed to turn off the
reconfiguration processes during this phase.

To model this two-phased mission, a different models must be created for each phase.  The follow-
ing ASSIST input describes a model for the cruise phase:

NSI = 2; (* Number of spares initially *)
LAMBDA = 1E-4; (* Failure rate of active processors *)
GAMMA = 1E-6; (* Failure rate of spares *)
TIME = 2.0; (* Mission time *)

MU = 7.9E-5; (* Mean time to replace with spare *)
SIGMA = 2.56E-5; (* Stan. dev. of time to replace with spare *)

MU_DEG = 6.3E-5; (* Mean time to degrade to simplex *)
SIGMA_DEG = 1.74E-5; (* Stan. dev. of time to degrade to simplex *)

SPACE = (NW: 0..3, (* Number of working processors *)
         NF: 0..3, (* Number of failed active procssors *)
         NS: 0..NSI); (* Number of spares *)

START = (3,0,NSI);

LIST=3;

IF NW > 0                               (* A processor can fail *)
   TRANTO (NW-1,NF+1,NS) BY NW*LAMBDA;

IF (NF > 0) AND (NS > 0)                (* A spare becomes active *)
   TRANTO (NW+1,NF-1,NS-1) BY <MU,SIGMA>;

IF (NF > 0) AND (NS = 0)                (* No more spares, degrade to simplex *)
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   TRANTO (1,0,0) BY <MU_DEG,SIGMA_DEG>;

IF NS > 0                               (* A spare fails and is detected *)
   TRANTO (NW,NF,NS-1) BY NS*GAMMA;

DEATHIF NF >= NW;

The ASSIST program generates the following SURE model.

NSI = 2;
LAMBDA = 1E-4;
GAMMA = 1E-6;
TIME = 2.0;
MU = 7.9E-5;
SIGMA = 2.56E-5;
MU_DEG = 6.3E-5;
SIGMA_DEG = 1.74E-5;
LIST = 3;

      2(* 3,0,2 *),     3(* 2,1,2 *)        = 3*LAMBDA;
      2(* 3,0,2 *),     4(* 3,0,1 *)        = 2*GAMMA;
      3(* 2,1,2 *),     4(* 3,0,1 *)        = <MU,SIGMA>;
      3(* 2,1,2 *),     1(* 1,2,2 DEATH  *) = 2*LAMBDA;
      3(* 2,1,2 *),     5(* 2,1,1 *)        = 2*GAMMA;
      4(* 3,0,1 *),     5(* 2,1,1 *)        = 3*LAMBDA;
      4(* 3,0,1 *),     6(* 3,0,0 *)        = 1*GAMMA;
      5(* 2,1,1 *),     6(* 3,0,0 *)        = <MU,SIGMA>;
      5(* 2,1,1 *),     1(* 1,2,1 DEATH  *) = 2*LAMBDA;
      5(* 2,1,1 *),     7(* 2,1,0 *)        = 1*GAMMA;
      6(* 3,0,0 *),     7(* 2,1,0 *)        = 3*LAMBDA;
      7(* 2,1,0 *),     8(* 1,0,0 *)        = <MU_DEG,SIGMA_DEG>;
      7(* 2,1,0 *),     1(* 1,2,0 DEATH  *) = 2*LAMBDA;
      8(* 1,0,0 *),     1(* 0,1,0 DEATH  *) = 1*LAMBDA;

(* NUMBER OF STATES IN MODEL = 8 *)
(* NUMBER OF TRANSITIONS IN MODEL = 14 *)
(* 4 DEATH STATES AGGREGATED INTO STATE 1 *)

The model for the second phase (phaz2.mod ) is easily created with a text editor by deleting the
reconfiguration transitions and changing the mission time to 0.05 hr.  The resulting file is

NSI = 2;
LAMBDA = 1E-4;
GAMMA = 1E-6; TIME = 2.0; LIST = 3;
      2(* 3,0,2 *),     3(* 2,1,2 *)        = 3*LAMBDA;
      2(* 3,0,2 *),     4(* 3,0,1 *)        = 2*GAMMA;

      3(* 2,1,2 *),     1(* 1,2,2 DEATH  *) = 2*LAMBDA;
      3(* 2,1,2 *),     5(* 2,1,1 *)        = 2*GAMMA;
      4(* 3,0,1 *),     5(* 2,1,1 *)        = 3*LAMBDA;
      4(* 3,0,1 *),     6(* 3,0,0 *)        = 1*GAMMA;

      5(* 2,1,1 *),     1(* 1,2,1 DEATH  *) = 2*LAMBDA;
      5(* 2,1,1 *),     7(* 2,1,0 *)        = 1*GAMMA;
      6(* 3,0,0 *),     7(* 2,1,0 *)        = 3*LAMBDA;

      7(* 2,1,0 *),     1(* 1,2,0 DEATH  *) = 2*LAMBDA;
      8(* 1,0,0 *),     1(* 0,1,0 DEATH  *) = 1*LAMBDA;

(* NUMBER OF STATES IN MODEL = 8 *)
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(* NUMBER OF TRANSITIONS IN MODEL = 14 *)
(* 4 DEATH STATES AGGREGATED INTO STATE 1 *)

The SURE program is then executed on the first model (stored in filephaz.mod ) by using the
LIST = 3  option.  This operation causes the SURE program to output all operational state probabili-
ties, as well as the death state probabilities. This output is

SURE V7.2   NASA Langley Research Center

  1? read0 phaz

 31? run

 MODEL FILE = phaz.mod                     SURE V7.2 11 Jan 90   13:56:49

DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS                 RUN #1
----------   -----------   -----------    ---------------------------------
     1       9.35692e-12   9.48468e-12
TOTAL        9.35692e-12   9.48468e-12

OPER-STATE    LOWERBOUND    UPPERBOUND
----------   -----------   -----------
      2       9.99396e-01   9.99396e-01
      3       0.00000e+00   1.53952e-06
      4       6.02277e-04   6.03819e-04
      5       0.00000e+00   1.43291e-09
      6       1.80332e-07   1.81768e-07
      7       0.00000e+00   5.59545e-13
      8       3.57995e-11   3.63591e-11

20 PATH(S) PROCESSED
0.617 SECS. CPU TIME UTILIZED
32? exit

The SURE program also creates a file containing these operational and death state probabilities in a
format that can be used to initialize the states for the next phase. The SURE program names the file
phaz.ini , that is, it adds.ini  to the file name.  The contents of this file generated by the previous
run  is

INITIAL_PROBS(
    1: ( 9.35692e-12, 9.48468e-12),
    2: ( 9.99396e-01, 9.99396e-01),
    3: ( 0.00000e+00, 1.53952e-06),
    4: ( 6.02277e-04, 6.03819e-04),
    5: ( 0.00000e+00, 1.43291e-09),
    6: ( 1.80332e-07, 1.81768e-07),
    7: ( 0.00000e+00, 5.59545e-13),
    8: ( 3.57995e-11, 3.63591e-11)
 );

 Next, the SURE program is executed on the second model.  The state probabilities are initialized
with the SUREINITIAL_PROBS  command.  The second model must number its states in a manner
equivalent to the first model.  Note that the output of the.ini  file is in the correct format for the SURE
program.

$ sure

  SURE V7.2   NASA Langley Research Center

  1? read0 phaz2



116

 31? read phaz.ini

 32: INITIAL_PROBS(
 33:     1: ( 9.35692e-12, 9.48468e-12),
 34:     2: ( 9.99396e-01, 9.99396e-01),
 35:     3: ( 0.00000e+00, 1.53952e-06),
 36:     4: ( 6.02277e-04, 6.03819e-04),
 37:     5: ( 0.00000e+00, 1.43291e-09),
 38:     6: ( 1.80332e-07, 1.81768e-07),
 39:     7: ( 0.00000e+00, 5.59545e-13),
 40:     8: ( 3.57995e-11, 3.63591e-11)
 41:   );

 42? run

 MODEL FILE = phaz.ini                    SURE V7.2 11 Jan 90   13:58:12

DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS                 RUN #1
----------   -----------   -----------    ---------------------------------
     1       8.43564e-11   9.98944e-11
TOTAL        8.43564e-11   9.98944e-11

OPER-STATE    LOWERBOUND    UPPERBOUND
----------   -----------   -----------
     2       9.99381e-01   9.99381e-01
     3       1.49908e-05   1.65304e-05
     4       6.02368e-04   6.03910e-04
     5       9.03554e-09   1.04918e-08
     6       1.80359e-07   1.81795e-07
     7       2.70540e-12   3.28658e-12
     8       3.57993e-11   3.63589e-11

 9 PATH(S) PRUNED AT LEVEL  1.49540e-16
 SUM OF PRUNED STATES PROBABILITY <  5.04017e-18

9 PATH(S) PROCESSED
0.417 SECS. CPU TIME UTILIZED
43?

16.2. Nonconstant Failure Rates

In section 16.1, a two-phased mission that required different models for each phase was analyzed.
A related situation occurs when the structure of the model remains the same, but some parameters, such
as the failure rates, change from one phase to another.

Consider a triad with warm spares (see section 9.2) that experiences different failure rates for each
phase.

1. Phase 1: 6 min,λ = 2× 10−4, γ = 10−4

2. Phase 2: 2 hr,λ = 10−4, γ = 10−5

3. Phase 3: 3 min,λ = 10−3, γ = 10−4

Immediate detection of spare failure will be assumed for simplicity.

The same SURE model can be used for all phases and the user can be prompted for the parameter
values by using the SUREINPUT command:

INPUT LAMBDA, GAMMA, TIME;
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The full SURE model, which is stored in filephase.mod , is

INPUT LAMBDA, GAMMA, TIME;
NSI = 2;
MU = 7.9E-5;
SIGMA = 2.56E-5;
MU_DEG = 6.3E-5;
SIGMA_DE = 1.74E-5;
LIST = 3;
QTCALC = 1;

    2(* 3,0,2 *),    3(* 2,1,2 *) = 3*LAMBDA;
    2(* 3,0,2 *),    4(* 3,0,1 *) = 2*GAMMA;
    3(* 2,1,2 *),    1(* 1,2,2 *) = 2*LAMBDA;
    3(* 2,1,2 *),    4(* 3,0,1 *) = <MU,SIGMA>;
    3(* 2,1,2 *),    5(* 2,1,1 *) = 2*GAMMA;
    4(* 3,0,1 *),    5(* 2,1,1 *) = 3*LAMBDA;
    4(* 3,0,1 *),    6(* 3,0,0 *) = 1*GAMMA;
    5(* 2,1,1 *),    1(* 1,2,1 *) = 2*LAMBDA;
    5(* 2,1,1 *),    6(* 3,0,0 *) = <MU,SIGMA>;
    5(* 2,1,1 *),    7(* 2,1,0 *) = 1*GAMMA;
    6(* 3,0,0 *),    7(* 2,1,0 *) = 3*LAMBDA;
    7(* 2,1,0 *),    1(* 1,2,0 *) = 2*LAMBDA;
    7(* 2,1,0 *),    8(* 1,0,0 *) = <MU_DEG,SIGMA_DEG>;
    8(* 1,0,0 *),    1(* 0,1,0 *) = 1*LAMBDA;

TheQTCALC = 1 command causes the SURE program to use more accurate (but slower) numeri-
cal routines.  This increased accuracy is often necessary when analyzing phased missions.  The
interactive session follows:

 SURE V7.2   NASA Langley Research Center

  1? read0 phase

     LAMBDA? 2e-4

     GAMMA? 1e-4

     TIME? .1

 30? run

 MODEL FILE = phase.mod                   SURE V7.2 12 Jan 90   09:35:50

 TIME =  1.000e-01,  GAMMA =  1.000e-04,  LAMBDA =  2.000e-04,

 DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS                 RUN #1
 ----------   -----------   -----------    ---------------------------------
      1       1.78562e-12   1.89600e-12    <ExpMat>

 TOTAL        1.78562e-12   1.89600e-12    <ExpMat - 14,14>

 OPER-STATE    LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
      2       9.99920e-01   9.99920e-01    <ExpMat>
      3       0.00000e+00   9.98043e-07    <ExpMat>
      4       7.89960e-05   7.99941e-05    <ExpMat>
      5       0.00000e+00   1.14966e-10    <ExpMat>
      6       2.67751e-09   2.80076e-09    <ExpMat>



118

      7       0.00000e+00   5.17358e-15    <ExpMat>
      8       5.08706e-14   5.60442e-14    <ExpMat>

  10 PATH(S) PRUNED AT LEVEL  4.75740e-20
  SUM OF PRUNED STATES PROBABILITY <  6.11113e-20
  Q(T) ACCURACY >= 14 DIGITS

 10 PATH(S) PROCESSED
 2.867 SECS. CPU TIME UTILIZED
 31? read0 phase

     LAMBDA? 1e-4

     GAMMA? 1e-5

     TIME? 2.0

 60? read phase.ini

 61: INITIAL_PROBS(
 62:     1: ( 1.78562e-12, 1.89600e-12),
 63:     2: ( 9.99920e-01, 9.99920e-01),
 64:     3: ( 0.00000e+00, 9.98043e-07),
 65:     4: ( 7.89960e-05, 7.99941e-05),
 66:     5: ( 0.00000e+00, 1.14966e-10),
 67:     6: ( 2.67751e-09, 2.80076e-09),
 68:     7: ( 0.00000e+00, 5.17358e-15),
 69:     8: ( 5.08706e-14, 5.60442e-14)
 70:   );

       0.07 SECS. TO READ MODEL FILE  71? run

 MODEL FILE = phase.ini                   SURE V7.2 12 Jan 90   09:36:19

 TIME =  2.000e+00,  GAMMA =  1.000e-05,  LAMBDA =  1.000e-04,

 DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS                 RUN #2
 ----------   -----------   -----------    ---------------------------------
      1       1.11438e-11   1.13950e-11    <ExpMat>

 TOTAL        1.11438e-11   1.13950e-11    <ExpMat - 14,14>

 OPER-STATE    LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
      2       9.99280e-01   9.99280e-01    <ExpMat>
      3       0.00000e+00   2.35621e-06    <ExpMat>
      4       7.17134e-04   7.20490e-04    <ExpMat>
      5       0.00000e+00   2.82024e-09    <ExpMat>
      6       2.48355e-07   2.51362e-07    <ExpMat>
      7       0.00000e+00   1.19806e-12    <ExpMat>
      8       5.53210e-11   5.65243e-11    <ExpMat>
  30 PATH(S) PRUNED AT LEVEL  4.61326e-19
  SUM OF PRUNED STATES PROBABILITY <  1.15985e-18
  Q(T) ACCURACY >= 14 DIGITS

 19 PATH(S) PROCESSED
 4.267 SECS. CPU TIME UTILIZED
 72? read0 phase

     LAMBDA? 1e-3

     GAMMA? 1e-4
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     TIME? 0.05

101? read phase.ini

102: INITIAL_PROBS(
103:     1: ( 1.11438e-11, 1.13950e-11),
104:     2: ( 9.99280e-01, 9.99280e-01),
105:     3: ( 0.00000e+00, 2.35621e-06),
106:     4: ( 7.17134e-04, 7.20490e-04),
107:     5: ( 0.00000e+00, 2.82024e-09),
108:     6: ( 2.48355e-07, 2.51362e-07),
109:     7: ( 0.00000e+00, 1.19806e-12),
110:     8: ( 5.53210e-11, 5.65243e-11)
111:   );

112? run

 MODEL FILE = phase.ini                   SURE V7.2 12 Jan 90   09:36:57

 TIME =  5.000e-02,  GAMMA =  1.000e-04,  LAMBDA =  1.000e-03,

 DEATHSTATE    LOWERBOUND    UPPERBOUND    COMMENTS                 RUN #3
 ----------   -----------   -----------    ---------------------------------
      1       3.29083e-11   3.54718e-11    <ExpMat>

 TOTAL        3.29083e-11   3.54718e-11    <ExpMat - 14,14>

 OPER-STATE    LOWERBOUND    UPPERBOUND
 ----------   -----------   -----------
      2       9.99120e-01   9.99120e-01    <ExpMat>
      3       0.00000e+00   6.30518e-06    <ExpMat>
      4       8.72933e-04   8.82595e-04    <ExpMat>
      5       0.00000e+00   7.50836e-09    <ExpMat>
      6       3.68000e-07   3.78561e-07    <ExpMat>
      7       0.00000e+00   3.72751e-12    <ExpMat>
      8       9.99350e-11   1.04866e-10    <ExpMat>

  33 PATH(S) PRUNED AT LEVEL  8.23385e-18
  SUM OF PRUNED STATES PROBABILITY <  3.35190e-17
  Q(T) ACCURACY >= 14 DIGITS

 13 PATH(S) PROCESSED
 3.350 SECS. CPU TIME UTILIZED
113? exit

As in section 16.2, the results of each previous phase are loaded by reading the.ini  file created by
the previous run.  The<ExpMat>  output in theCOMMENTS field indicates that the more accurate
QTCALC=1 numerical routines were utilized.

16.3. Continuously Varying Failure Rates

Suppose that the failure rates change continuously with time as shown in figure 61.  This type of
failure rate is called a decreasing failure rate. The SURE program cannot handle this failure rate directly
because it leads to nonhomogenous or nonstationary Markov models.  Nonhomogenous Markov models
are more general than pure Markov models in that they allow the transition rates to vary as a function of
global time.  This generalization is different from the semi-Markov model first discussed in section 4.1.
However, good results can be obtained by using the phased-mission approach on a linearized upper
bound as shown in figure 62.
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The solution of the linearized model requires nine steps, but is quite easy with the use of the
.ini files.  Because an upper bound is used for the failure rate, the result will be conservative.  The
problem can then be solved again by using a consistently lower bound on the failure rate function to
obtain a lower bound on the system failure probability.

17. Concluding Remarks

 This paper is intended to serve as a tutorial for reliability engineers who are learning how to
develop Markov models of fault-tolerant systems. A number of techniques for developing reliability
models of fault-tolerant systems have been presented. Various modeling techniques have been pre-
sented in a systematic way, building from simple systems to more complicated ones. Techniques for
modeling specific aspects, such as single-point failures, near-coincident failures, transient fault recover-
ies, and cold spares have been discussed. However, it must be recognized that there is no “right” way to
model a system. Many valid ways to model a given system exist, and choosing which method will result
in an efficient, informative model is sometimes more of an art than a science.

Including every minute detail in a reliability model of a complex system is impossible, because such
a model would be exorbitantly large. It is not even possible to completely understand and measure the
reliability behavior of a system in minute detail.  Therefore, the reliability engineer must make certain
assumptions about the behavior of a system. Some of these assumptions are immediately obvious; while
others must be demonstrated or proven correct.

Markov modeling can be a very powerful reliability analysis tool for three reasons.  First, Markov
models provide the reliability engineer the flexibility to include a variety of assumptions and behaviors.
Second, the reliability engineer is fully aware of the assumptions being made because they are made
explicitly. And third, the reliability engineer can estimate the effects of those assumptions on the system
failure probability calculations.

However, reliability analysis requires a certain level of expertise that cannot be easily automated.
The use of an automated tool that makes implicit assumptions can be dangerous.  Even if the engineer
completely understands what implicit assumptions a tool can make,  these assumptions are likely to be
forgotten if they are not made visible. For this reason, the ASSIST program is designed to generate
exactly the model described in the input language and to not make any implicit assumptions.  Thus,
ASSIST includes all the flexibility of Markov models.  It also requires the same level of modeling
expertise.

NASA Langley Research Center
Hampton, VA 23681-0001
April 21, 1995

Figure 61.  Decreasing failure rate function. Figure 62.  Upper bound on failure rate functions.
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Appendix

Additional SURE Mathematics

In this appendix, additional important aspects of the SURE mathematical foundation are presented.
The methods described in this section were not published in reference 1, but were discussed in
reference 9.

A1.  Technique for Solving Models With Loops Using SURE

Although the bounding theorem of White is only concerned with paths that do not contain a loop,
the SURE program uses a strategy based upon pruning to solve models with loops.   A model containing
loops (its graph structure contains a circuit) has an infinite number of paths.  Consider the model in
figure A1. Unfolding the loop produces an infinite sequence of paths as shown in figure A2.

However, the situation is not intractable because the resulting sequence consists of increasingly
longer paths.  The death state probabilities of the paths decrease rapidly like a Taylor’s series.  A typical
sequence of probabilities would be

The series can be truncated at a point where the sum of all subsequent probabilities becomes negli-
gible.  The SURE program accomplishes this truncation in a manner that enables a calculation of an
upper and a lower bound on the truncation error.  The technique is based on  a model with a loop that is
equivalent to a finite sequence of paths where only the last path in the sequence contains a loop.  For
example, the model shown in figure A1 can be reduced to the three paths shown in figure A3.  The

Figure A1.  Model with loop.

Figure A2.  Infinite sequence of paths.
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probability of entering the death state of the original path is equal to the sum of the probabilities of
entering the death state of the three new paths.

If the third path is pruned before the loop, then an upper bound can be obtained.  Consequently, the
sum of the three paths shown in figure A4 provides an upper bound on the original model of figure A1.
Thus, a finite unfolding of a loop in conjunction with pruning can be used to solve a model with loops.
This is precisely the technique implemented in the SURE program.

 A2. Solving Models With Distributed Initial State Probabilities

Suppose that we need to solve a model, whose initial state is not exactly determined, needed to be
solved.  Suppose, for example, that the probability that the system is in state (1) at time 0 = 0.5 and that
the initial probabilities for states (2) and (3) are 0.3 and 0.2, respectively.  The SURE program solves
this model with the following strategy.  The model is solved three times—first with state (1) as the start
state, then with state (2) as the start state, and finally with state (3) as the start state.  Each  preliminary
result is multiplied by the  initial probability of its start state, then the resulting values are added
together.

Figure A3.  Reduction to finite set of paths.

Figure A4.  Model after pruning and reduction.
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The SURE input language contains anINITIAL_P  statement for initializing states.  For example,

INITIAL_P(1: 0.3, 2: 0.7);

assigns an initial probability of 0.3 to state (1) and an initial probability of 0.7 to state (2).  The user may
also specify upper and lower bounds on the initial state probabilities:

INITIAL_P(1: (0.27,0.31), 2: (0.69,0.71));

 A3. Operational State Probabilities

The SURE program can also specify the bound of the operational state probabilities.  Given the
model shown in figure A5, the program first calculates the death state probabilitiesp8(T) andp9(T).
Next, the program solves the reduced model shown in figure A6, obtainingp7' (T).

The probability of being in the operational state (7),p7(T) in the original model, can be calculated as
follows:

Although this process might seem to be laborious, it is efficiently implemented in SURE.  All basic
probabilities are calculated while SURE is traversing the graph structure of the model.  Because the
bounds are algebraic, the calculations are not costly.  The subtractions are performed as SURE backs
out of the recursions after reaching a death state.  Of course, the calculations are performed by using
bounds rather than exact probabilities.  The bounds on the operational states are not as close as the
bounds on the death states, but are usually close enough to be useful for the solution of a sequence of
semi-Markov models used for phased missions.  The closer a state is to a death state, the closer the
bounds are.

Figure A5.  Model of SURE calculations for operational
state probabilities.

Figure A6.  Reduced model.
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